scholarly journals Opportunities of Circular Economy in a Complex System of Woody Biomass and Municipal Sewage Plants

Author(s):  
Attila Bai ◽  
Zoltán Gabnai

In this chapter, we present the opportunities and general importance of woody biomass production (forests and short-rotation coppices) and waste management in a common system. Wastewater and different forms of sewage sludge, as energy- and nutrient-rich materials, can contribute to reaching resource efficiency, savings in energy, and reduction of CO2 emissions. Within certain limits, these woody plantations are suitable options for the environmentally sound disposal of wastewater and/or sewage sludge; in addition, they can facilitate the realization of full or partial energy self-sufficiency of the wastewater plant through bioenergy production. Focusing on circular economy, we introduce the aspects of the treatment process and the sizing issues regarding the municipal wastewater treatment and the woody biomass in a complex system. Based on a specific case study, approximately 826 ha of short-rotation coppices (with a 2-year rotation) are required for the disposal of sewage sludge generated by a 250,000 population equivalent wastewater treatment plant. If we look at the self-sufficiency of its energy output, 120–150 ha of short-rotation coppices may be adequate. This complex system can replace the emissions of around 5650 t of CO2 through electricity generation alone and another 1490 t of CO2 by utilizing the waste heat.

2018 ◽  
Vol 77 (11) ◽  
pp. 2613-2623 ◽  
Author(s):  
Kerstin Schopf ◽  
Johannes Judex ◽  
Bernhard Schmid ◽  
Thomas Kienberger

Abstract A municipal wastewater treatment plant accounts for a large portion of the total energy consumption of a municipality. Besides their high energy demand, the plants also display a significant bioenergy potential. This is due to the utilisation of the energy content of digester gas and sewage sludge if there exist suitable units. To maximise the energy recovery efficiency of wastewater treatment systems (WWTS), it is important to analyse the amount of digester gas and sludge produced in different types of plants. Therefore, the present paper deals with designing a tool to answer the following research questions: Which bioenergy potentials occur in different plant types? Which mass and energy flows are related to the specific potentials? Which utilisation processes for the potentials can lead to a high energy recovery efficiency of WWTS? Preliminary analyses with the designed tool were focused on estimating the level of electric and thermal energy self-sufficiency of different plant configuration scenarios including or excluding digester gas and/or sludge utilisation units. First results based on the level of self-sufficiency and associated energy and disposal costs show that a digester gas and sewage sludge utilisation should be considered when designing future WWTS.


2012 ◽  
Vol 66 (6) ◽  
pp. 1277-1281 ◽  
Author(s):  
P. Jenicek ◽  
J. Bartacek ◽  
J. Kutil ◽  
J. Zabranska ◽  
M. Dohanyos

Anaerobic digestion is the only energy-positive technology widely used in wastewater treatment. Full-scale data prove that the anaerobic digestion of sewage sludge can produce biogas that covers a substantial amount of the energy consumption of a wastewater treatment plant (WWTP). In this paper, we discuss possibilities for improving the digestion efficiency and biogas production from sewage sludge. Typical specific energy consumptions of municipal WWTPs per population equivalent are compared with the potential specific production of biogas to find the required/optimal digestion efficiency. Examples of technological measures to achieve such efficiency are presented. Our findings show that even a municipal WWTP with secondary biological treatment located in a moderate climate can come close to energy self-sufficiency. However, they also show that such self-sufficiency is dependent on: (i) the strict optimization of the total energy consumption of the plant, and (ii) an increase in the specific biogas production from sewage sludge to values around 600 L per kg of supplied volatile solids.


2020 ◽  
Vol 12 (9) ◽  
pp. 3686 ◽  
Author(s):  
Ksymena Rosiek

Landfilling was the main method of sewage sludge disposal in Poland for decades. After Poland’s accession to the European Union (EU), many investments have been made into providing better access to tap water as well as to collect and treat municipal sewage. However, sewage sludge treatment has not been treated as an integral part of the implementation of wastewater management obligations. Stricter European Union regulations regarding the management of municipal sewage sludge (MSS) pose new challenges for Poland. The aim of this study was to analyze changes in the direction of the final management of municipal sewage sludge in Poland based on the analysis of strategic documents, regulations, literature, and available statistical data. The aim of the analysis was to search for directions to modify how sewage sludge is managed, given the approach promoted by the circular economy concept. The results prove that investments in wastewater treatment plants according to the EU sewage directive are not applied to the development of infrastructure that would enable the disposal of sewage sludge, which, for many years, has been stored (landfilling) or used directly in agriculture and ground reclamation. The introduction of stricter regulations in the area of sewage sludge usage and better wastewater treatment have increased the level of difficulties concerning sewage sludge management. Poland faces the challenge of defining sewage sludge management directions. The circular economy concept offers an approach that can be the basis for the creation of a new sewage sludge management strategy for Poland. The concept allows the combined goals of sewage sludge disposal and of energy and nutrients recovery to be achieved.


2021 ◽  
Author(s):  
Małgorzata Jadwiga Kacprzak

Abstract Introduction of the circular economy package as a result of the necessity to protect natural resources has also forced a new approach for effective wastewater and biowaste treatment and management. Wastewater treatment plants (WWTPs) have become crucial elements of regional bioeconomy - mainly through energy (waste to energy) and matter (nutrients-energy-water) recovery as an element of sustainable development of a smart city. In Poland in 2019 operated 3278 municipal wastewater treatment plants. To achieve specific effluent goals for BOD, nitrogen and phosphorus, different adaptations and modifications have been made. Modernization of technological lines of wastewater treatment has led to a significant improvement in the quality of treated sewage, at the largest WWTPs in Warsaw, Cracow or Gdansk. Eleven WWTPs produce approx. 34% of the total volume of approx. 337 GWh of electricity from biogas in Poland. The potential of producing electricity from biogas in WWTPs in Poland can be estimated at approx. 700–850 GWh per year. According to the data of the Statistics Poland in 2019 in Poland approx. 25% of sewage sludge was used directly in agriculture and for land reclamation. Simultaneously more than 100 WWTPs produce compost at high quality. However only few produce organic/organic-mineral fertilizers, mainly with addition of calcium.


Author(s):  
Malgorzata J. Kacprzak ◽  
Iwona Kupich

AbstractWastewater treatment plants (WWTPs) have become crucial elements of the regional bioeconomy—mainly through energy (waste to energy) and matter (nutrients–energy–water) recovery as an element of sustainable development of a smart city. In Poland, a decentralized system functioned with 3278 municipal wastewater treatment plants, and less than 80% of the population were connected to public urban wastewater treatment systems. The paper presents the technology selection and implementation of circular economy at WWTPs and the practical approach to challenge of energy-positive and environmentally friendly wastewater and sewage sludge sector. The modernization of technological lines of wastewater treatment has led to a significant improvement in the quality of treated sewage, at the largest WWTPs in Warsaw, Cracow, or Gdansk. Eleven WWTPs produce 34% of the total volume of approximately 337 GWh of electricity from biogas in Poland. The potential of producing electricity from biogas in WWTPs in Poland can be estimated at approximately 700–850 GWh per year. According to the data of the Statistics Poland in Poland, approximately 25% of sewage sludge was used directly in agriculture and for land reclamation. Simultaneously, more than 100 WWTPs produce compost at a high quality. However, only few produce organic/organic-mineral fertilizers, mainly with addition of calcium. Decentralization leads to different technologies used in wastewater treatment plants, and environmental, economic, and social conditions determine the direction of changes and introduction of a circular economy paradigm in the Polish wastewater sector. Graphic abstract


2017 ◽  
Vol 11 (3-4) ◽  
pp. 141-146
Author(s):  
Zoltán Gabnai

In my article, after describing the characteristics of recent wastewater treatment activity, I introduce different traditional and innovative energetic opportunities of the compulsory waste management activities at large-scale operational level, covering national and international examples. Furthermore, the wastewater-based biomethane production and the certain plant’s energy self-sufficiency are highlighted topics as well. In the former case, it is possible to utilize the wastewater-based biomethane as fuel (and even to operate own vehicle fleet), while the second one gives the opportunity for the internal usage of produced electricity and waste heat, which can also result in significant cost-savings. As an additional option, algae-based wastewater post treatment is presented, based on the conditions of a Hungarian wastewater treatment plant, which biogas production efficiency and thus energy self-sufficiency has developed favourably due to the technological improvements. These plants may have a twofold role in the future: they are responsible for the compulsory waste management activity and on the other hand they can serve as excellent raw material mines. JEL Code: Q25


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1431 ◽  
Author(s):  
Sonia Guerra-Rodríguez ◽  
Paula Oulego ◽  
Encarnación Rodríguez ◽  
Devendra Narain Singh ◽  
Jorge Rodríguez-Chueca

The advancement of science has facilitated increase in the human lifespan, reflected in economic and population growth, which unfortunately leads to increased exploitation of resources. This situation entails not only depletion of resources, but also increases environmental pollution, mainly due to atmospheric emissions, wastewater effluents, and solid wastes. In this scenario, it is compulsory to adopt a paradigm change, as far as the consumption of resources by the population is concerned, to achieve a circular economy. The recovery and reuse of resources are key points, leading to a decrease in the consumption of raw materials, waste reduction, and improvement of energy efficiency. This is the reason why the concept of the circular economy can be applied in any industrial activity, including the wastewater treatment sector. With this in view, this review manuscript focuses on demonstrating the challenges and opportunities in applying a circular economy in the water sector. For example, reclamation and reuse of wastewater to increase water resources, by paying particular attention to the risks for human health, recovery of nutrients, or highly added-value products (e.g., metals and biomolecules among others), valorisation of sewage sludge, and/or recovery of energy. Being aware of this situation, in the European, Union 18 out of 27 countries are already reusing reclaimed wastewater at some level. Moreover, many wastewater treatment plants have reached energy self-sufficiency, producing up to 150% of their energy requirements. Unfortunately, many of the opportunities presented in this work are far from becoming a reality. Still, the first step is always to become aware of the problem and work on optimizing the solution to make it possible.


Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 91 ◽  
Author(s):  
Andrey Kiselev ◽  
Elena Magaril ◽  
Romen Magaril ◽  
Deborah Panepinto ◽  
Marco Ravina ◽  
...  

Today it is obvious that the existing linear model of the economy does not correlate with the principles of sustainable development. The circular economy model can replace the current linear economy whilst addressing the issues of environmental deterioration, social equity and long-term economic growth. In the context of effectively implementing circular economy objectives, particular importance should be attributed to wastewater treatment sludge management, due to the possibility of recovering valuable raw materials and using its energy potential. Anaerobic digestion is one of the methods of recovering energy from sewage sludge. The main goal of this study is to make a preliminary evaluation of possible sewage sludge biogas and biomethane solutions using a computation model called MCBioCH4 and compare its results with laboratory tests of sewage sludge fermentation from the northern wastewater treatment plant (WWTP) of Ekaterinburg (Russian Federation). Laboratory experiments were conducted to determine the volume and qualitative composition of biogas produced throughout anaerobic fermentation of raw materials coming from the WWTP. The specific productivity of samples ranged between 308.46 Nm3/tvs and 583.08 Nm3/tvs depending if mesophilic or thermophilic conditions were analyzed, or if the experiment was conducted with or without sludge pre-treatment. Output values from the laboratory were used as input for MCBioCH4 to calculate the flow of biogas or biomethane produced. For the case study of Ekaterinburg two possible energy conversion options were selected: B-H (biogas combustion with cogeneration of electrical and thermal energy) and M-T (biomethane to be used in transports). The results of the energy module showed a net energy content of the biogas between 6575 MWh/year and 7200 MWh/year. Both options yielded a favorable greenhouse gas (GHG) balance, meaning that avoided emissions are higher than produced emissions. The results discussion also showed that, in this case, the B-H option is preferable to the M-T option. The implementation of the biogas/biomethane energy conversion system in Ekaterinburg WWTP necessitates further investigations to clarify the remaining technical and economic aspects


2021 ◽  
Vol 13 (16) ◽  
pp. 9330
Author(s):  
Andelina Bubalo ◽  
Drazen Vouk ◽  
Nina Stirmer ◽  
Karlo Nad

In this paper the properties of clay bricks with 5 wt%, 10 wt%, and 20 wt% sewage sludge ash (SSA) were studied and compared with the properties of control bricks made of 100% clay. Sewage sludge (SS) was collected at two wastewater treatment plants (WWTPs) in Croatia—WWTP Zagreb and WWTP Karlovac—and incinerated at a temperature of 900 °C The bricks were produced on a laboratory scale. A total of seven types of bricks were produced—control bricks and six types of bricks as combinations of different wt% of SSA generated from SS that was collected at two different WWTPs. The physical and mechanical properties of produced bricks were tested. Compressive strengths of bricks with 5 wt% SSA (54.0–54.5 N/mm2) and 10 wt% SSA (50.2–51.0 N/mm2) were higher compared to the control bricks (50.4 N/mm2), while bricks with 20 wt% SSA (37.0–43.9) N/mm2) had noticeably lower compressive strenght. The coefficient of saturation was lower for bricks with SSA compared to control bricks. The initial absorption values were more pronounced for SSA fractions of 20 wt%.


2019 ◽  
Vol 18 (9) ◽  
pp. 2023-2034 ◽  
Author(s):  
Agnieszka A. Pilarska ◽  
Krzysztof Pilarski ◽  
Boguslawa Waliszewska ◽  
Magdalena Zborowska ◽  
Kamil Witaszek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document