scholarly journals Survey and Analysis of Lightweight Authentication Mechanisms

2020 ◽  
Author(s):  
Adarsh Kumar ◽  
Deepak Kumar Sharma

Interconnection of devices through Radio Frequency IDentification (RFID) brings enormous applications that are increasing constantly day by day. Due to the rapid growth of such applications, security of RFID networks becomes crucial and is a major challenge. Classical or lightweight cryptography primitives and protocols are the solutions to enhance the security standards in such networks. Authentication protocols are one of the important security protocols required to be integrated before exchange of secured information. This work surveyed the recently developed authentication protocols. Further, classifications, security challenges, and attack analysis are explored. A comparative analysis of different types of authentication protocols explains their applications in resourceful and resource constraint Internet of Things (IoT). Authentication protocols are categorized into: symmetric, asymmetric, lightweight, ultra-lightweight and group protocols. Symmetric and asymmetric protocols are more suitable for resourceful devices whereas lightweight and ultra-lightweight protocols are designed for resource constraint devices. Security and cost analysis shows that asymmetric protocols provide higher security than any other protocol at a reasonable cost. However, lightweight authentication protocols are suitable for passive RFID devices but do not provide full security.

Author(s):  
Gyozo Gódor ◽  
Sándor Imre

Radio frequency identification technology is becoming ubiquitous, and as an unfortunate side effect, more and more authentication solutions come with more security issues. In former contributions, the authors introduced a solely hash-based secure authentication algorithm that is capable of providing protection against most of the well-known attacks and performs exceptionally well even in very large systems. The authors gave a theoretical analysis of Simple Lightweight Authentication Protocol (SLAP) protocol from security and performance point of view. This chapter gives a detailed examination of small computational capacity systems from the point of view of security. The authors define the model of attacker and the well-known attacks which can be achieved in these kinds of environments. Furthermore, the chapter gives a summary of the significant RFID authentication protocols which are found in literature. The authors present several lightweight authentication protocols and some novel elliptic curve cryptography based methods. Besides, the chapter illustrates the SLAP protocol’s performance characteristics with measurements carried out in a simulation environment and compares with the theoretical results. The authors show the effects of numerous attacks and the system’s different parameters on the authentication time. Finally, the chapter examines the performance and security characteristics of two other protocols chosen from the literature in order to compare to SLAP algorithm and give proper explanation for the differences between them.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3584 ◽  
Author(s):  
Rania Baashirah ◽  
Abdelshakour Abuzneid

Radio Frequency Identification (RFID) is one of the leading technologies in the Internet of Things (IoT) to create an efficient and reliable system to securely identify objects in many environments such as business, health, and manufacturing areas. Recent RFID authentication protocols have been proposed to satisfy the security features of RFID communication. In this article, we identify and review some of the most recent and enhanced authentication protocols that mainly focus on the authentication between a reader and a tag. However, the scope of this survey includes only passive tags protocols, due to the large scale of the RFID framework. We examined some of the recent RFID protocols in term of security requirements, computation, and attack resistance. We conclude that only five protocols resist all of the major attacks, while only one protocol satisfies all of the security requirements of the RFID system.


Author(s):  
Priyanka Naresh Chandra Dayal

Abstract: Day by day, the population of the country is increasing and the requirement of the power is also increasing in many ways. So, reforming this energy back to usable form is the major solution for future needs. In this Footstep power generation project, power is generated by human’s footsteps, so as to charge the battery by storing the power generated with the help of piezo sensors. The power stored in the battery, used to charge the mobile phones using RFID card. This system is powered by Atmega 328 microcontroller, it consists of Arduino IDE, RFID Sensor, USB Cable and LCD. When power is on in the system, the system enters into the registration mode. Three users can registered. Once all the users entered in the system, then the system asks to swipe the card and connect the charger. Initially all the user is given 5 minutes of charging time as default. When card is swiped and the user is authorized, the system turns on for charging the Mobile phone within a given time period. Keywords: Arduino Uno, Arduino IDE, Piezoelectric Sensors, RFID (Radio Frequency Identification ), LCD


Author(s):  
Emran Md Amin ◽  
Nemai Chandra Karmakar

A novel approach for non-invasive radiometric Partial Discharge (PD) detection and localization of faulty power apparatuses in switchyards using Chipless Radio Frequency Identification (RFID) based sensor is presented. The sensor integrates temperature sensing together with PD detection to assist on-line automated condition monitoring of high voltage equipment. The sensor is a multi-resonator based passive circuit with two antennas for reception of PD signal from the source and transmission of the captured PD to the base station. The sensor captures PD signal, processes it with designated spectral signatures as identification data bits, incorporates temperature information, and retransmits the data with PD signals to the base station. Analyzing the PD signal in the base station, both the PD levels and temperature of a particular faulty source can be retrieved. The prototype sensor was designed, fabricated, and tested for performance analysis. Results verify that the sensor is capable of identifying different sources at the events of PD. The proposed low cost passive RFID based PD sensor has a major advantage over existing condition monitoring techniques due to its scalability to large substations for mass deployment.


Author(s):  
Pablo Picazo-Sanchez ◽  
Lara Ortiz-Martin ◽  
Pedro Peris-Lopez ◽  
Julio C. Hernandez-Castro

Radio Frequency Identification (RFID) is a common technology for identifying objects, animals, or people. The main form of barcode-type RFID device is known as an Electronic Product Code (EPC) and the most popular standard for passive RFID tags is Class-1 Generation-2. In this technology, the information transmitted between devices is through the air, therefore adversaries can eavesdrop these messages passed on the insecure radio channel and finally, the security of the system can be compromised. In this chapter, the authors analyze the security of EPC Class-1 Generation-2 standard, showing its security weaknesses and presenting some possible countermeasures.


Technologies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 15 ◽  
Author(s):  
Santiago Figueroa Lorenzo ◽  
Javier Añorga Benito ◽  
Pablo García Cardarelli ◽  
Jon Alberdi Garaia ◽  
Saioa Arrizabalaga Juaristi

The Internet of Things (IoT) provides the ability to digitize physical objects into virtual data, thanks to the integration of hardware (e.g., sensors, actuators) and network communications for collecting and exchanging data. In this digitization process, however, security challenges need to be taken into account in order to prevent information availability, integrity, and confidentiality from being compromised. In this paper, security challenges of two broadly used technologies, RFID (Radio Frequency Identification) and Bluetooth, are analyzed. First, a review of the main vulnerabilities, security risk, and threats affecting both technologies are carried out. Then, open hardware and open source tools like: Proxmark3 and Ubertooth as well as BtleJuice and Bleah are used as part of the practical analysis. Lastly, risk mitigation and counter measures are proposed.


Author(s):  
Annalisa Milella ◽  
Paolo Vanadia ◽  
Grazia Cicirelli ◽  
Arcangelo Distante

In this paper, the use of passive Radio Frequency Identification (RFID) as a support technology for mobile robot navigation and environment mapping is investigated. A novel method for localizing passive RFID tags in a geometric map of the environment using fuzzy logic is, first, described. Then, it is shown how a mobile robot equipped with RF antennas, RF reader, and a laser range finder can use such map for localization and path planning. Experimental results from tests performed in our institute suggest that the proposed approach is accurate in mapping RFID tags and can be effectively used for vehicle navigation in indoor environments.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4752 ◽  
Author(s):  
Khwaja Mansoor ◽  
Anwar Ghani ◽  
Shehzad Chaudhry ◽  
Shahaboddin Shamshirband ◽  
Shahbaz Ghayyur ◽  
...  

Despite the many conveniences of Radio Frequency Identification (RFID) systems, the underlying open architecture for communication between the RFID devices may lead to various security threats. Recently, many solutions were proposed to secure RFID systems and many such systems are based on only lightweight primitives, including symmetric encryption, hash functions, and exclusive OR operation. Many solutions based on only lightweight primitives were proved insecure, whereas, due to resource-constrained nature of RFID devices, the public key-based cryptographic solutions are unenviable for RFID systems. Very recently, Gope and Hwang proposed an authentication protocol for RFID systems based on only lightweight primitives and claimed their protocol can withstand all known attacks. However, as per the analysis in this article, their protocol is infeasible and is vulnerable to collision, denial-of-service (DoS), and stolen verifier attacks. This article then presents an improved realistic and lightweight authentication protocol to ensure protection against known attacks. The security of the proposed protocol is formally analyzed using Burrows Abadi-Needham (BAN) logic and under the attack model of automated security verification tool ProVerif. Moreover, the security features are also well analyzed, although informally. The proposed protocol outperforms the competing protocols in terms of security.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Hugo Landaluce ◽  
Laura Arjona ◽  
Asier Perallos ◽  
Lars Bengtsson ◽  
Nikola Cmiljanic

One of the main existing problems in Radio Frequency Identification (RFID) technology is the tag collision problem. When several tags try to respond to the reader under the coverage of the same reader antenna their messages collide, degrading bandwidth and increasing the number of transmitted bits. An anticollision protocol, based on the classical Binary Tree (BT) protocol, with the ability to decrease the number of bits transmitted by the reader and the tags, is proposed here. Simulations results show that the proposed protocol increases the throughput with respect to other recent state-of-the-art protocols while keeping a low energy consumption of a passive RFID system.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Adnan Mehmood ◽  
Han He ◽  
Xiaochen Chen ◽  
Aleksi Vianto ◽  
Ville Vianto ◽  
...  

This paper introduces ClothFace, a shirtsleeve-integrated human-technology interface platform, which comprises two wrist antennas and three radio frequency identification (RFID) integrated circuits (ICs), each with a unique ID. The platform prototype, which is created on a shirtsleeve by cutting the antennas and antenna-IC interconnections from copper tape, can be used for push button and swipe controlling. Each IC can be activated, i.e., electrically connected to the two antennas, by touching the IC. These ICs can act as wireless input buttons to the technology around us. Due to the used passive ultrahigh-frequency (UHF) RFID technology, there is no need for clothing-integrated energy sources, but the interface platform gets all the needed energy from an external RFID reader. The platform prototype was found to be readable with an external RFID reader from all directions at distances of 70–80 cm. Further, seven people giving altogether 1400 inputs tested the prototype sleeves on a table and on body. In these first tests, 96–100% (table) and 92–100% (on-body) success rates were achieved in a gamelike testing setup. Further, the platform was proved to be readable with an off-the-shelf handheld RFID reader from a distance of 40 cm. Based on these initial results, this implementation holds the potential to be used as a touch interface blended into daily clothing, as well as a modular touch-based interaction platform that can be integrated into the surfaces of electronic devices, such as home appliances.


Sign in / Sign up

Export Citation Format

Share Document