scholarly journals Seismological Data Acquisition and Analysis within the Scope of Citizen Science

2021 ◽  
Author(s):  
Ewald Brückl ◽  
Peter Carniel ◽  
Stefan Mertl ◽  
Rita Meurers

From 2017 till 2020 a low cost seismic sensor network was built in the southern Vienna Basin, Lower Austria, as a part of ongoing educational and citizen science projects. The purpose of the project is to inform society about the seismic activity in this area and to include authorities and interested citizens into data acquisition and exploitation. Near real time (NRT) seismic data are made accessible online. Seismic events are detected and archived automatically. The visualization of these events online facilitates instantaneously estimates of the extent of the shaking area and potential damage. Peak ground velocities (PGV) are related to macroseismic intensities (EMS-98) derived from reports about ground motion felt in the vicinity of the network stations. Observed amplitudes and travel times are modeled by simple, but effective relations. Traditional and innovative localization methods based on travel times and amplitudes are applied and analyzed with respect to data quality and localization accuracy. All results are accessible online and the computer code is open and applicable, e.g. for educational purposes.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2857
Author(s):  
Simon Tomažič ◽  
Igor Škrjanc

Indoor localization is becoming increasingly important but is not yet widespread because installing the necessary infrastructure is often time-consuming and labor-intensive, which drives up the price. This paper presents an automated indoor localization system that combines all the necessary components to realize low-cost Bluetooth localization with the least data acquisition and network configuration overhead. The proposed system incorporates a sophisticated visual-inertial localization algorithm for a fully automated collection of Bluetooth signal strength data. A suitable collection of measurements can be quickly and easily performed, clearly defining which part of the space is not yet well covered by measurements. The obtained measurements, which can also be collected via the crowdsourcing approach, are used within a constrained nonlinear optimization algorithm. The latter is implemented on a smartphone and allows the online determination of the beacons’ locations and the construction of path loss models, which are validated in real-time using the particle swarm localization algorithm. The proposed system represents an advanced innovation as the application user can quickly find out when there are enough data collected for the expected radiolocation accuracy. In this way, radiolocation becomes much less time-consuming and labor-intensive as the configuration time is reduced by more than half. The experiment results show that the proposed system achieves a good trade-off in terms of network setup complexity and localization accuracy. The developed system for automated data acquisition and online modeling on a smartphone has proved to be very useful, as it can significantly simplify and speed up the installation of the Bluetooth network, especially in wide-area facilities.



Author(s):  
Cheyma BARKA ◽  
Hanen MESSAOUDI-ABID ◽  
Houda BEN ATTIA SETTHOM ◽  
Afef BENNANI-BEN ABDELGHANI ◽  
Ilhem SLAMA-BELKHODJA ◽  
...  


2021 ◽  
Vol 1826 (1) ◽  
pp. 012082
Author(s):  
G F Bassous ◽  
R F Calili ◽  
C R H Barbosa


Drones ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 6
Author(s):  
Apostolos Papakonstantinou ◽  
Marios Batsaris ◽  
Spyros Spondylidis ◽  
Konstantinos Topouzelis

Marine litter (ML) accumulation in the coastal zone has been recognized as a major problem in our time, as it can dramatically affect the environment, marine ecosystems, and coastal communities. Existing monitoring methods fail to respond to the spatiotemporal changes and dynamics of ML concentrations. Recent works showed that unmanned aerial systems (UAS), along with computer vision methods, provide a feasible alternative for ML monitoring. In this context, we proposed a citizen science UAS data acquisition and annotation protocol combined with deep learning techniques for the automatic detection and mapping of ML concentrations in the coastal zone. Five convolutional neural networks (CNNs) were trained to classify UAS image tiles into two classes: (a) litter and (b) no litter. Testing the CCNs’ generalization ability to an unseen dataset, we found that the VVG19 CNN returned an overall accuracy of 77.6% and an f-score of 77.42%. ML density maps were created using the automated classification results. They were compared with those produced by a manual screening classification proving our approach’s geographical transferability to new and unknown beaches. Although ML recognition is still a challenging task, this study provides evidence about the feasibility of using a citizen science UAS-based monitoring method in combination with deep learning techniques for the quantification of the ML load in the coastal zone using density maps.





Author(s):  
Devina Cristine Marubin ◽  
◽  
Sim Sy Yi ◽  

Can-Sized satellite (canSAT) is a small satellite that is used for educational purpose. CanSAT offer student to build their satellites with their creativity which make the learning process more effective. In Malaysia, SiswaSAT is held by the Malaysia Space Agency for students in different categories to participate and build their satellites according to rules set and it should be a low-cost project. CanSAT can be divided into few parts which are communication system, onboard data acquisition, ground control station and power system. The power system is one of the important and heaviest subsystems, it needed to supply power, but weight and size are one of the main concerned as the canSAT should not exceed the required weight and selecting power supply that is matched with the overall power budget that has small size and lightweight is challenging. Therefore, the power supply selection should consider this detail. The power distribution design should be able to supply an appropriate amount of current and voltage to the components according to their specification. This study aims to develop and test the proposed prototype which is named ScoreSAT able to provide data and have enough power supply for the whole operation. Therefore, an initiative to develop the appropriate power distribution design for canSAT is taken to overcome the problem of the power system. Moreover, each subsystem needs to be tested by obtaining the results from the onboard data acquisition and transmit the data using the communication system before integrating into the power system. ScoreSAT prototype needs to carry the system that is mounted inside, thus the space inside the prototype needs to be fully utilized for the whole system to fit in. ScoreSAT completes the mission by obtaining data acquisition during the operation.



Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2382 ◽  
Author(s):  
Antonio Vidal-Pardo ◽  
Santiago Pindado

In this work, a new and low-cost Arduino-Based Data Acquisition System (ABDAS) for use in an aerodynamics lab is developed. Its design is simple and reliable. The accuracy of the system has been checked by being directly compared with a commercial and high accuracy level hardware from National Instruments. Furthermore, ABDAS has been compared to the accredited calibration system in the IDR/UPM Institute, its measurements during this testing campaign being used to analyzed two different cup anemometer frequency determination procedures: counting pulses and the Fourier transform. The results indicate a more accurate transfer function of the cup anemometers when counting pulses procedure is used.



2015 ◽  
Vol 752-753 ◽  
pp. 1191-1197
Author(s):  
Hakan Terzioğlu ◽  
Saadetdin Herdem ◽  
Güngör Bal

Since automatic control is used in every field, there is almost no industrial application system which doesn’t employ the sensors. It makes correctly reading the data obtained from sensors in the system with sensors and transmitting this data into the computer more important. In this executed study, a design for an interface which can be easily used with a low cost data processing card and with flexible structure was performed. In the executed system, the PIC18F4550 microcontroller was used and data can be accurately read from 10 different channels. The data read from the designed data acquisition card was transferred into a computer interface program prepared in C# program using a USB and recorded into the database in the Microsoft Access program. The designed interface, the values of read signals and their graphs may be displayed on the screen. Thus, the interface screen may be used as both an indicator and oscilloscope screen.



Sign in / Sign up

Export Citation Format

Share Document