scholarly journals Active Gaits Generation of Quadruped Robot Using Pulse-Type Hardware Neuron Models

Biomimetics ◽  
2021 ◽  
Author(s):  
Yuki Takei ◽  
Katsuyuki Morishita ◽  
Riku Tazawa ◽  
Ken Saito

In this chapter, the authors will propose the active gait generation of a quadruped robot. We developed the quadruped robot system using self-inhibited pulse-type hardware neuron models (P-HNMs) as a solution to elucidate the gait generation method. We feedbacked pressures at the robot system’s each foot to P-HNM and varied the joints’ angular velocity individually. We experimented with making the robot walk from an upright position on a flat floor. As a result of the experiment, we confirmed that the robot system spontaneously generates walk gait and trot gait according to the moving speed. Also, we clarified the process by which the robot actively generates gaits from the upright state. These results suggest that animals may generate gait using a similarly simple method because P-HNM mimics biological neurons’ function. Furthermore, it shows that our robot system can generate gaits adaptively and quite easily.


Author(s):  
Yuki Takei ◽  
Katsuyuki Morishita ◽  
Riku Tazawa ◽  
Koichi Katsuya ◽  
Ken Saito

Abstract In this paper, the authors will propose the active gait generation of a quadruped robot. The theory that quadruped animals unconsciously generate gaits by some system based on neural networks in the spinal cord is widely accepted. However, how biological neurons or neural networks can generate gaits is not clear. To clarify the gait generation method, one of the solutions is using the neuron model similar to the biological neuron. We developed the quadruped robot system using self-inhibited pulse-type hardware neuron models (P-HNMs), which can output the electrical activity similar to those of biological neurons. The P-HNMs consist of the cell body model and the inhibitory synaptic model. The cell body model periodically outputs pulsed voltages; the inhibitory synaptic model inhibits the pulsed voltages. The pulse period can change by varying the synaptic weight control voltage applied to the P-HNMs. We varied the synaptic weight control voltage according to the pressure on the robot’s toes. Also, we changed the angle of the robot’s joints by a constant angle each time the P-HNMs output a pulse. As a result of the walking experiment, we confirmed that the robot generates walk gait and trot gait according to the moving speed. Also, we clarified the process by which the robot actively generates gaits from the upright state. These results show that animals may not use many biological neurons to generate gaits. Furthermore, the results suggest the possibility of realizing simple and bio-inspired robot control.





2017 ◽  
Vol 14 (5) ◽  
pp. 172988141773189 ◽  
Author(s):  
Taihui Zhang ◽  
Honglei An ◽  
Hongxu Ma

Hydraulic actuated quadruped robot similar to BigDog has two primary performance requirements, load capacity and walking speed, so that it is necessary to balance joint torque and joint velocity when designing the dimension of single leg and controlling its motion. On the one hand, because there are three joints per leg on sagittal plane, it is necessary to firstly optimize the distribution of torque and angular velocity of every joint on the basis of their different requirements. On the other hand, because the performance of hydraulic actuator is limited, it is significant to keep the joint torque and angular velocity in actuator physical limitations. Therefore, it is essential to balance the joint torque and angular velocity which have negative correlation under the condition of constant power of the hydraulic actuator. The main purpose of this article is to optimize the distribution of joint torques and velocity of a redundant single leg with joint physical limitations. Firstly, a modified optimization criterion combining joint torques with angular velocity that takes both support phase and flight phase into account is proposed, and then the modified optimization criterion is converted into a normal quadratic programming problem. A kind of recurrent neural network is used to solve the quadratic program problem. This method avoids tremendous matrix inversion and fits for time-varying system. The achieved optimized distribution of joint torques and velocity is useful for aiding mechanical design and the following motion control. Simulation results presented in this article confirm the efficiency of this optimization algorithm.



1958 ◽  
Vol 25 (2) ◽  
pp. 210-213
Author(s):  
L. E. Goodman ◽  
A. R. Robinson

Abstract The well-known noncommutativity of three-dimensional finite rotations has long been a curiosity in mechanics since, in actual solution of dynamical problems, the angular velocity, which is conveniently representable as a vector, plays a more natural role. In modern inertial guidance systems, however, the orientation of a body in space, i.e., a rotation, is of primary engineering interest. In this paper a simple method of determining orientation from the time history of three body components of angular velocity is developed by means of a new theorem in kinematics. As a special case of this theorem it is shown that a gyro subjected to a regime of rotations which returns it to the original space orientation will, in general, produce a residual signal. It will have experienced a nonzero and easily calculated mean angular velocity about its input axis. Some implications of the theorem for the design of inertial guidance systems and for the testing of gyros are discussed.



Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2251 ◽  
Author(s):  
Jikai Liu ◽  
Pengfei Wang ◽  
Fusheng Zha ◽  
Wei Guo ◽  
Zhenyu Jiang ◽  
...  

The motion state of a quadruped robot in operation changes constantly. Due to the drift caused by the accumulative error, the function of the inertial measurement unit (IMU) will be limited. Even though multi-sensor fusion technology is adopted, the quadruped robot will lose its ability to respond to state changes after a while because the gain tends to be constant. To solve this problem, this paper proposes a strong tracking mixed-degree cubature Kalman filter (STMCKF) method. According to system characteristics of the quadruped robot, this method makes fusion estimation of forward kinematics and IMU track. The combination mode of traditional strong tracking cubature Kalman filter (TSTCKF) and strong tracking is improved through demonstration. A new method for calculating fading factor matrix is proposed, which reduces sampling times from three to one, saving significantly calculation time. At the same time, the state estimation accuracy is improved from the third-degree accuracy of Taylor series expansion to fifth-degree accuracy. The proposed algorithm can automatically switch the working mode according to real-time supervision of the motion state and greatly improve the state estimation performance of quadruped robot system, exhibiting strong robustness and excellent real-time performance. Finally, a comparative study of STMCKF and the extended Kalman filter (EKF) that is commonly used in quadruped robot system is carried out. Results show that the method of STMCKF has high estimation accuracy and reliable ability to cope with sudden changes, without significantly increasing the calculation time, indicating the correctness of the algorithm and its great application value in quadruped robot system.



2011 ◽  
Vol 287-290 ◽  
pp. 2789-2792
Author(s):  
Yu Xiao Zhang ◽  
Xian Quan Zeng ◽  
Xin Jie Wang

Because weight is unsymmetrical for the robot with hand-fused foot, a method is found to calculate the centroid projection coordinate from the perspective of Newtonian mechanics. Centroid projection coordinate of the robot is detected with ARM, pressure sensors, distance measuring sensors, and multiplexer. Software is designed for the centroid projection detection from 3 aspects as multiplexer chip selection, A/D conversion operations, and centroid calculation. In the experiment, several groups of data were gained, which contained sensors data and centroid projection coordinate. Centroid projection detection has certain reference value for gait generation and path planning.



Author(s):  
Yoon Haeng Lee ◽  
Young Hun Lee ◽  
Hyunyong Lee ◽  
Hansol Kang ◽  
Luong Tin Phan ◽  
...  


2017 ◽  
Vol 83 (849) ◽  
pp. 17-00017-17-00017 ◽  
Author(s):  
Yuhei SUZUKI ◽  
Hisashi OSUMI


Sign in / Sign up

Export Citation Format

Share Document