Study of Adsorption Properties of Bentonite Clay

2021 ◽  
Author(s):  
Reda Marouf ◽  
Nacer Dali ◽  
Nadia Boudouara ◽  
Fatima Ouadjenia ◽  
Faiza Zahaf

The clay used in this study was the bentonite from Mostagnem, Algeria. This material is used in many fields such as drilling, foundry, painting, ceramics, etc. It can also be applied in the treatment of wastewaters from chemical industries by means of adsorption. In this chapter the physicochemical properties of bentonite were determined by using several analyses techniques such as chemical composition, XRD, FTIR and SBET. The bentonite was intercalated by aluminum poly-cations solution and cethytrimethyl ammonium bromide. The acid activation of natural bentonite was performed by treatment with hydrochloric acid at different concentrations. The surface water pollutants removed by the modified bentonites are bemacid yellow E-4G and reactive MX-4R dyes, and fungicide chlorothalinil. The Langmuir and Freundlich adsorption models were applied to describe the related isotherms. The pseudo-first order and pseudo-second order kinetic models were used to describe the kinetic data. The changes of enthalpy, entropy and Gibbs free energy of adsorption process were also calculated.

2015 ◽  
Vol 814 ◽  
pp. 125-131
Author(s):  
Fang Qiu ◽  
Min Le Peng ◽  
Zhi Mei Wei ◽  
Gang Zhang ◽  
Sheng Ru Long ◽  
...  

Bead-on-string nanofibers were prepared by electrospinning, in this work, . The effect of processing parameters and property of solutions on the morphology of bead-on-string nanofibers were systematically investigated. The results revealed that the morphology of beads on nanofibers transformed from spherical into spindle-like with increased concentration of solution, applied voltage and needle-collector distance. Average width of beads became smaller as increasing all the values of processing parameters. Meanwhile, the application for the removal of bisphenol A (BPA) from aqueous solution was investigated, and results showed that the bead-on-string nanofibers could effectively remove BPA from aqueous solution. The kinetic data were analyzed by the pseudo-first-order, pseudo-second-order kinetic models. The reusability of the composite nanofiber was also determined after five adsorption–desorption cycles.


2013 ◽  
Vol 741 ◽  
pp. 55-58
Author(s):  
Wen Lian Luo

The removal of Cu2+ ions from aqueous solution was studied using pickled diatomite samples. The linear Langmuir and Freundlich adsorption equations were applied to describe the equilibrium isotherms. The pseudo-first-order and pseudo-second-order models were used to determine the kinetic data. The experimental data were well fitted by the pseudo-second-order kinetic model.


2013 ◽  
Vol 67 (11) ◽  
pp. 2560-2567 ◽  
Author(s):  
Fan Yang ◽  
Xiaojie Song ◽  
Lifeng Yan

Cationic paper was prepared by reaction of paper with 2,3-epoxypropyltrimethylammonium chloride in aqueous suspension, and tested as low-cost adsorbent for wastewater treatment. The experimental results revealed that anionic dyes (Acid Orange 7, Acid Red 18, and Acid Blue 92) were adsorbed on the cationic paper nicely. The maximum amount of dye Acid Orange 7 adsorbed on cationic paper was 337.2 mg/g in experimental conditions. The effects of initial dye concentration, temperature, and initial pH of dye solution on adsorption capacity of cationic paper were studied. The pseudo-first-order and pseudo-second-order kinetic models were applied to describe the kinetic data. The Freundlich and Langmuir adsorption models were used to describe adsorption equilibrium. The thermodynamic data indicated that the adsorption process of dye on cationic paper occurred spontaneously.


NANO ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. 1650125 ◽  
Author(s):  
Shuang Sun ◽  
Xiaofei Ma

Polyvinyl alcohol (PVA) was grafted on graphene nanosheets (GN) in the reduction of graphene oxide with hydrazine hydrate. The obtained GN-PVA (GP) suspension was treated with the freezing–thawing cycle to fabricate 3D porous monolithic GP materials, which were modified with carbon disulfide to introduce xanthan groups on the wall of porous materials, marked as GPCs. The characterization of GPCs confirmed that PVA was attached on the surface of GNs, and xanthan groups were effectively functionalized on the porous structures, which were composed of randomly oriented GNs. The Pb[Formula: see text] adsorption pattern for GPC materials was investigated. The kinetic adsorption and isotherm data fit the pseudo second-order kinetic and the Langmuir isotherm models, respectively. The maximum adsorption capacity of Pb[Formula: see text] reached 242.7[Formula: see text]mg/g. And GPCs for Pb[Formula: see text] adsorption could be regenerated with ethylenediamine tetracetic acid (EDTA) solution for repetitious adsorption.


2018 ◽  
Vol 913 ◽  
pp. 907-916 ◽  
Author(s):  
Shu Yan ◽  
Yi Ming Pan ◽  
Lu Wang ◽  
Xiao Yan Zhang ◽  
Jing Jing Liu ◽  
...  

The attapulgite microspheres were produced by spray drying method and calcination process subsequently. The effects of calcination temperature on the microstructure and adsorption properties of methylene blue(MB) were investigated systematically. Results show that the median diameter of the microspheres increases after calcination. The adsorption capacity and removal efficiency of MB reaches the maximum values(96.62mg/g and 96.6%) after calcined at 600°C and decreases with the temperature increasing. The adsorption process can be described better by the pseudo-second-order kinetic model and fit the the Langmuir equation. The attapulgite microsphere shows good adsorption properties, which may be used as potential applications in various dyeing wastewater fields.


2018 ◽  
Vol 77 (5) ◽  
pp. 1363-1371 ◽  
Author(s):  
Yong Fu ◽  
Yue Huang ◽  
Jianshe Hu ◽  
Zhengjie Zhang

Abstract A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG0 and ΔH0 suggested that the adsorption was a spontaneous exothermic process.


2020 ◽  
Vol 24 (2) ◽  
pp. 329-333
Author(s):  
D.O. Jalija ◽  
A . Uzairu

The objective of this study was to investigate the biosorption of Cu (II) and Ni (II) ions from aqueous solution by calcium alginate beads. The effects of solution pH, contact time and initial metal ion concentration were evaluated. The results showed that maximum Cu (II) removal (93.10%) occurred at pH of 9.0, contact time of 120 minutes and initial ion concentration of 10 mg/L while that of Ni (II) was 94.6%, which was achieved at pH of 8.0, contact time of 120 minutes and initial ion concentration of 10 mg/L. The equilibrium data fitted well to the Langmuir Isotherm indicating that the process is a monolayer adsorption. The coefficients of determination, R2, values for the Langmuir Isotherm were 0.9799 and 0.9822 respectively for Cu (II) and Ni (II) ions. The values of the maximum biosorption capacity, Qo, were 10.79 and 6.25 mgg-1 respectively. The kinetic data also revealed that the sorption process could best be described by the pseudo – second order kinetic model. The R2 values for the pseudo – second order kinetic plots for Cu (II) and Ni (II) were 0.9988 and 0.9969 respectively. These values were higher than those for the pseudo – first order plots. The values of the biosorption capacity qe obtained from the pseudo – second order plots were very close to the experimental values of qe indicating that the biosorption process follows the second order kinetics. This study has therefore shown that calcium alginate beads can be used for the removal of Cu (II) and Ni (II) ions from wastewaters. Keywords: Keywords: Adsorption, Calcium alginate, Isotherm, Langmuir, Pseudo- first order, Pseudo-second order


2013 ◽  
Vol 11 (1) ◽  
pp. 501-509
Author(s):  
Xueyong Zhou ◽  
Huifen Liu ◽  
Xianzhi Lu ◽  
Lili Shi ◽  
Jianchao Hao

Abstract Genetically modified crops, which produce insecticidal toxins from Bacillus thuringiensis (Bt), release the toxins into soils. Although the phenomena of persistence and degradation of Bt toxins have been documented, the effect of heavy metals on the fate of these toxins in soil has not yet been elucidated. The effect of Pb(II) on the adsorption behaviors of Bt toxin in brown and red soil was investigated. With the increase of Pb(II) concentration, the adsorption of Bt toxin in brown and red soil increased. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models gave better fitting to the experimental equilibrium data. Values of KL, KF and n increased but RL decreased with the increase of Pb(II) concentration, showing that the Pb(II) promoted the adsorption of Bt toxin in soils. The mean free energy of adsorption (E) ranged from 10.43 to 16.44 kJ mol−1 may correspond to a chemical ion-exchange mechanism. Three kinds of kinetic models, the pseudo-first-order, pseudo-second-order and intraparticle diffusion model, were used to test the experimental data. The results showed that the adsorption of Bt toxin by brown and red soil followed the pseudo-second-order kinetic model. The addition of Pb(II) during the adsorption led to a decrease of the desorption of Bt toxin from soils, indicating that the residual risk of Bt toxin may become larger if soil is polluted by lead.


2010 ◽  
Vol 88 (6) ◽  
pp. 540-547 ◽  
Author(s):  
Justyna Jachuła ◽  
Dorota Kołodyńska ◽  
Zbigniew Hubicki

The sorption of Cd(II) and Pb(II) ions from aqueous solutions on different ion exchangers was investigated by using glycolic acid (GA) as a complexing agent. Glycolic acid is useful for organic synthesis in oxidation–reduction, esterification, and long-chain polymerization. The experiments were carried out by using the following chelating ion exchangers: Purolite S-930, Purolite S-940, Purolite S-950, Diaion CR-20, and Wofatit MC-50 and the cationic ion exchangers: Purolite C-104, Lewatit CNP-80, and Lewatit SP-112. The influence of the initial concentration of Cd(II) and Pb(II) and glycolic acid, pH of the solution, and phase contact time on the sorption percentage was determined in the batch experiments. Pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data, fitted using the Langmuir and Freundlich adsorption models, were applied to describe the equilibrium isotherms and determined the isotherm constants. The Cd(II) and Pb(II) concentrations in the raffinate were determined by the AAS method.


2014 ◽  
Vol 955-959 ◽  
pp. 610-617
Author(s):  
Wang Bin Cheng ◽  
Jie Ding ◽  
Xian Shu Liu ◽  
Chun Miao Liu

In this paper, poly aluminium chloride (PAC) was used to remove phenol and aniline from the aqueous phase .The adsorption properties of this process was investigated by zeta potential measurement, infrared spectroscopy and the analysis of pollutants structure and adsorption kinetic. The results described that not only electrostatic attraction but hydrogen adsorption were the main mechanism of both the phenol adsorption and the aniline adsorption. The pseudo second-order kinetic equation could best describe these two adsorption kinetics. The calculated activated energy of adsorption processes of phenol and aniline were 47.2KJ/mol and 44KJ/mol, respectively, which indicated that the adsorption process was chemisorption. Friedrich model was fitter to describe the adsorption isotherm of these two adsorption processes.


Sign in / Sign up

Export Citation Format

Share Document