scholarly journals Theoretical Studies on Anti-Oxidant Activity of the Phytochemical, Coumestrol and Its Derivatives

2021 ◽  
Author(s):  
Puttanveedu Vinduja ◽  
Karuvanthodi Muraleedharan

Free radical-induced changes in cellular and organ levels have been studied as a possible underlying cause of various adverse health conditions. Important research efforts have, therefore, been made to discover more powerful and potent antioxidants/free radical scavengers for the treatment of these adverse conditions. The phytoestrogen coumestrol intensively attracted scientific interest due to their efficient pharmacological activities. In this scenario, DFT studies were carried out to test the antiradical activities of coumestrol and its derivatives. The results obtained from FEDAM plots demonstrated that the coumestrol derivatives pointed out were good radical scavengers relative to the parent molecule in the gas phase. The derivatives whose 16thposition substituted with electron-donating groups like -NH2, -OCH3 and -CH3 showed good antioxidant capacity. Three antioxidant mechanisms, including hydrogen atom transfer (HAT), electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET), were investigated by measuring thermodynamic parameters.

1988 ◽  
Vol 263 (36) ◽  
pp. 19809-19814
Author(s):  
E Niki ◽  
E Komuro ◽  
M Takahashi ◽  
S Urano ◽  
E Ito ◽  
...  

2013 ◽  
Vol 9 (1) ◽  
pp. 100-103 ◽  
Author(s):  
Praveen Kumar Suryadevara ◽  
Hari Babu Tatipaka ◽  
Rama Subba Rao Vidadala ◽  
Ashok k Tiwari ◽  
Janaswamy Madhusudana Rao ◽  
...  

2011 ◽  
Vol 286 (18) ◽  
pp. 16504-16515 ◽  
Author(s):  
Yi Wen ◽  
Wenjun Li ◽  
Ethan C. Poteet ◽  
Luokun Xie ◽  
Cong Tan ◽  
...  

Neuroprotective strategies, including free radical scavengers, ion channel modulators, and anti-inflammatory agents, have been extensively explored in the last 2 decades for the treatment of neurological diseases. Unfortunately, none of the neuroprotectants has been proved effective in clinical trails. In the current study, we demonstrated that methylene blue (MB) functions as an alternative electron carrier, which accepts electrons from NADH and transfers them to cytochrome c and bypasses complex I/III blockage. A de novo synthesized MB derivative, with the redox center disabled by N-acetylation, had no effect on mitochondrial complex activities. MB increases cellular oxygen consumption rates and reduces anaerobic glycolysis in cultured neuronal cells. MB is protective against various insults in vitro at low nanomolar concentrations. Our data indicate that MB has a unique mechanism and is fundamentally different from traditional antioxidants. We examined the effects of MB in two animal models of neurological diseases. MB dramatically attenuates behavioral, neurochemical, and neuropathological impairment in a Parkinson disease model. Rotenone caused severe dopamine depletion in the striatum, which was almost completely rescued by MB. MB rescued the effects of rotenone on mitochondrial complex I-III inhibition and free radical overproduction. Rotenone induced a severe loss of nigral dopaminergic neurons, which was dramatically attenuated by MB. In addition, MB significantly reduced cerebral ischemia reperfusion damage in a transient focal cerebral ischemia model. The present study indicates that rerouting mitochondrial electron transfer by MB or similar molecules provides a novel strategy for neuroprotection against both chronic and acute neurological diseases involving mitochondrial dysfunction.


2001 ◽  
Vol 16 (9) ◽  
pp. 1976-1981 ◽  
Author(s):  
S. Dinara ◽  
K. Sengoku ◽  
K. Tamate ◽  
M. Horikawa ◽  
M. Ishikawa

Sign in / Sign up

Export Citation Format

Share Document