scholarly journals Building for Sustainable Ventilation and Air Quality

2021 ◽  
Author(s):  
Mikael Björling

Most legislations concerning ventilation are based on perceived air quality criteria, but ventilation is also important for the health of the occupants. The perceived air quality criteria can be viewed as a pragmatic tool to achieve an adequate ventilation for precautionary health measures. From a comfort and health perspective, the ventilation rate and an efficient air distribution are both important for achieving a healthy and comfortable indoor environment. Yet, most legislative requirements focus on the ventilation rate. This is not enough, and it is recommended that legislation also address the air distribution with the same zeal. In particular, the efficient distribution of fresh air to the occupied zones or lowering the concentrations of pollutants in the occupied zones. Because there are clear links between ventilation and health, it is extremely worrying that the “energy efficiency first” principle advocated in the Energy Performance of Buildings Directive (EPBD) has led to decreasing ventilation requirements in the European Union legislations, at the same time as the objective is to aggressively tighten the envelopes of the building stock. A second consequence of EPBD is probably that many naturally ventilated buildings will be retrofitted with mechanical ventilation systems. It is not clear that this would be the more sustainable solution in the long run.

2019 ◽  
Vol 111 ◽  
pp. 06073 ◽  
Author(s):  
Ioan Silviu Dobosi ◽  
Cristina Tanasa ◽  
Nicoleta-Elena Kaba ◽  
Adrian Retezan ◽  
Dragos Mihaila

The building sector has been identified as having the greatest energy reduction potential and therefore represents a key factor for the European Union climate change combat objectives of achieving an 80-95% greenhouse gas emissions reduction by 2050. Hospitals buildings represent 7% of the nonresidential building stock in the European Union and are responsible for approximately 10% of the total energy consumption in this sector. The design and construction of hospital buildings is a complex and challenging activity for all the involved specialists, especially when energy performance is one of the objectives. This paper discusses the energy performance simulation on an hourly basis of a new hospital building that was constructed in the city of Mioveni, Romania. At this stage of the study, the building energy model solely investigates the performance of the building envelope, without modelling the HVAC system. The complexity of the building model derives from the multitude of thermal zones depending on interior temperature and ventilation air changes conditions. Several simulations are performed investigating the heating and cooling energy need depending on the building location.


2019 ◽  
Vol 111 ◽  
pp. 06026
Author(s):  
Ece Kalaycıoğlu ◽  
Ayşe Zerrin Yılmaz

Looking at the recent developments, the European Union (EU) aims to become a zero carbon community. For the building sector, Energy Performance of Buildings Directive (EPBD) was recast in 2010 introducing the definition of the nearly zero energy building (NZEB) levels to construct all new buildings at this level by the end of 2020. The last revision of the directive in 2018 also promotes the renovation of the building stock to the NZEB levels. In the paper, it was proposed to define the nearly zero energy levels for settlements. This way, it was aimed to discuss the advantages and disadvantages of reaching the nearly zero energy levels at larger scales than single buildings. Settlement level studies, including the district energy systems, intended to reveal the energy efficiency measures which lead to optimal cost levels for more than one building. Key parameters were examined for a new settlement design which may be beneficial for the large-scale renewable energy system implementation and district energy system (DES) usage with high energy performance buildings.


Author(s):  
Filipe O Cunha ◽  
Armando C Oliveira

Abstract Hotels hold an important role in the energy efficiency policies of the European Union (EU), as they are typically ranked among the top energy consumers in the non-residential sector. However, a significant amount of the energy used in hotels is wasted, leaving ample room for enhancing energy-efficiency and resource conservation. Indeed, energy refurbishment of the hotel building stock is crucial in order to reach the nearly zero energy building (nZEB) status imposed by EU Directives for energy efficiency, and also an important pillar to achieve the energy targets for 2030 and the transition towards climate-neutral levels by 2050. A typical 4-star hotel in operation in Faro (Portugal) was used as a case study in order to establish energy performance indicators for nZEB hotels in three European cities, taking into account the influence of the climatic context, the technical feasibility and cost effectiveness of the best energy retrofit packages. The study started after the calibration of the building energy model by means of an energy audit and measured data, in order to have a baseline model that represents well the actual energy use of the hotel in the reference location. The building energy model was developed by using DesignBuilder/EnergyPlus software. The validated model was then used to assess the effect of the best retrofit interventions (energy efficiency measures and active solar systems) in order to set minimum energy performance requirements and to reach cost-optimal levels and nZEB levels for refurbished hotels. A significant energy-saving potential was found for the cost-optimal benchmarks, and the obtained nZEB levels can be achieved under technically and economically conditions for the selected cities: Faro, London and Athens.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3866 ◽  
Author(s):  
Christoffer Rasmussen ◽  
Peder Bacher ◽  
Davide Calì ◽  
Henrik Aalborg Nielsen ◽  
Henrik Madsen

In Europe, more and more data on building energy use will be collected in the future as a result of the energy performance of buildings directive (EPBD), issued by the European Union. Moreover, both at European level and globally it became evident that the real energy performance of new buildings and the existing building stock needs to be documented better. Such documentation can, for example, be done with data-driven methods based on mathematical and statistical approaches. Even though the methods to extract energy performance characteristics of buildings are numerous, they are of varying reliability and often associated with a significant amount of human labour, making them hard to apply on a large scale. A classical approach to identify certain thermal performance parameters is the energy signature method. In this study, an automatised, nonlinear and smooth approach to the well-known energy signature is proposed, to quantify key thermal building performance parameters. The research specifically aims at describing the linear and nonlinear heat usage dependency on outdoor temperature, wind and solar irradiation. To make the model scalable, we realised it so that it only needs the daily average heat use of buildings, the outdoor temperature, the wind speed and the global solar irradiation. The results of applying the proposed method on heat consumption data from 16 different and randomly selected Danish occupied houses are analysed.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4607 ◽  
Author(s):  
Carmen María Calama-González ◽  
Ángel Luis León-Rodríguez ◽  
Rafael Suárez

Current energy efficiency policies in buildings foster the promotion of energy retrofitting of the existing stock. In southern Spain, the most extensive public sector is that of educational buildings, which is especially subject to significant internal loads due to high occupancy. A large fraction of the energy retrofit strategies conducted to date have focused on energy aspects and indoor thermal comfort, repeatedly disregarding indoor air quality criteria. This research assesses indoor air quality in a school located in the Mediterranean area, with the objective of promoting different ventilation scenarios, based on occupancy patterns and carbon dioxide levels monitored on site. Results show that manual ventilation cannot guarantee minimum indoor quality levels following current standards. A constant ventilation based on CO2 levels allows 15% more thermal comfort hours a year to be reached, compared to CO2-based optimized demand-controlled ventilation. Nevertheless, the latter ensures 35% annual energy savings, compared to a constant CO2-based ventilation, and 37% more annual energy savings over that of a constant ventilation rate of outdoor air per person.


2021 ◽  
Vol 312 ◽  
pp. 02005
Author(s):  
Lorenzo Belussi ◽  
Ludovico Danza ◽  
Matteo Ghellere ◽  
Italo Meroni ◽  
Francesco Salamone ◽  
...  

Since its introduction in 2010, the nearly Zero Energy Building (nZEB) concept has known a large diffusion in European countries. Albania, an aspiring candidate country to join the European Union EU, is paving the way towards its introduction by transposing EU directives in the fields of energy efficiency into the national legislation. Most of the national building stock includes buildings with low thermal and energy performance but with high refurbishment potential, too. The country can become an important contributor in the EU decarbonization strategy due to the high percentage of electricity produced by hydropower stations, making it one of the least carbon-intensity countries in the electricity production point of view. The article focuses on the evaluation of the energy performance of an existing school located in Tirana and the potentialities to reach the nZEB target, analysing both the suitable technological solutions and the energy market situation. The Primary Energy Factors PEF for the local electricity market are estimated referring to statistical data and in comparison, with neighbouring countries, Italy and Greece, in order to investigate the potential of the achievement of the nZEB target in Albania.


2019 ◽  
Vol 41 (3) ◽  
pp. 361-373
Author(s):  
Carlos Ochoa ◽  
Beth Massey

The existing residential building stock in many industrialized countries is large but extremely energy inefficient, despite the existence of energy directives that apply mostly to new construction. Prefabricated building refurbishment for energy upgrading is a viable option for the existing building stock, but solutions need to adapt to each case and usage in order to respond to specific requirements. The “RECO2ST” project (Horizon 2020) is used as example of a forecast methodology that can help achieve nearly zero energy refurbishments, through selection of innovative modular elements for the opaque and transparent areas of the building envelope, covering diverse energy reduction strategies while improving thermal comfort and indoor air quality. This integrated approach is not usual in the field. The Technical Note studies a series of facade and active window technologies that supply climate strategies such as insulation, heat recovery and ventilation. The methodology is demonstrated for three sample cases using a typical refurbishment scenario. It is evaluated through energy simulation and analysis of improvements in thermal comfort and indoor air quality indicators. Practical application: The methodology helps to reduce guesswork for actions to be taken in order to refurbish and upgrade the existing housing stock to comply with current energy directives. It takes into account at the same time energy performance and user comfort, as expressed through indoor air quality.


2021 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Alessandro Piccinini ◽  
Federico Seri ◽  
Letizia D’Angelo ◽  
Shima Yousefigarjan ◽  
Marcus M. Keane

Energy Performance Contracting (EPC) can help the European Union (EU) in accelerating the cost-effective renovation of existing building stock. However, there are many risks and barriers that can inhibit the application of EPC. These barriers include uncertainty about building data, lack of quality assurance regarding the post-renovation energy performance, and process complexity. In order to cross these barriers, this paper presents ModSCO. ModSCO is a web application based on a Reduced Order grey-box Model (ROM) able to systematically quantify the energy savings achieved through Energy Conservation Measures (ECMs) utilising the schema of the International Performance Measurement and Verification Protocol (IPMVP). The benefits of utilising ModSCO in terms of accuracy and time savings are demonstrated with a comparison with a whole building energy model developed with IES-VE.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3311
Author(s):  
Víctor Pérez-Andreu ◽  
Carolina Aparicio-Fernández ◽  
José-Luis Vivancos ◽  
Javier Cárcel-Carrasco

The number of buildings renovated following the introduction of European energy-efficiency policy represents a small number of buildings in Spain. So, the main Spanish building stock needs an urgent energy renovation. Using passive strategies is essential, and thermal characterization and predictive tests of the energy-efficiency improvements achieving acceptable levels of comfort for their users are urgently necessary. This study analyzes the energy performance and thermal comfort of the users in a typical Mediterranean dwelling house. A transient simulation has been used to acquire the scope of Spanish standards for its energy rehabilitation, taking into account standard comfort conditions. The work is based on thermal monitoring of the building and a numerical validated model developed in TRNSYS. Energy demands for different models have been calculated considering different passive constructive measures combined with real wind site conditions and the behavior of users related to natural ventilation. This methodology has given us the necessary information to decide the best solution in relation to energy demand and facility of implementation. The thermal comfort for different models is not directly related to energy demand and has allowed checking when and where the measures need to be done.


2021 ◽  
Vol 13 (4) ◽  
pp. 2266
Author(s):  
Valentina Marincioni ◽  
Virginia Gori ◽  
Ernst Jan de Place Hansen ◽  
Daniel Herrera-Avellanosa ◽  
Sara Mauri ◽  
...  

Buildings of heritage significance due to their historical, architectural, or cultural value, here called historic buildings, constitute a large proportion of the building stock in many countries around the world. Improving the performance of such buildings is necessary to lower the carbon emissions of the stock, which generates around 40% of the overall emissions worldwide. In historic buildings, it is estimated that heat loss through external walls contributes significantly to the overall energy consumption, and is associated with poor thermal comfort and indoor air quality. Measures to improve the performance of walls of historic buildings require a balance between energy performance, indoor environmental quality, heritage significance, and technical compatibility. Appropriate wall measures are available, but the correct selection and implementation require an integrated process throughout assessment (planning), design, construction, and use. Despite the available knowledge, decision-makers often have limited access to robust information on tested retrofit measures, hindering the implementation of deep renovation. This paper provides an evidence-based approach on the steps required during assessment, design, and construction, and after retrofitting through a literature review. Moreover, it provides a review of possible measures for wall retrofit within the deep renovation of historic buildings, including their advantages and disadvantages and the required considerations based on context.


Sign in / Sign up

Export Citation Format

Share Document