scholarly journals Impact of IoT on Renewable Energy

2021 ◽  
Author(s):  
Sivagami Ponnalagarsamy ◽  
V. Geetha ◽  
M. Pushpavalli ◽  
P. Abirami

The emerging computing technology in this era is the Internet of Things. The network of intelligence that bridges various devices, systems located in remote locations together by means of cloud portal. IoT maybe equipped with millions or billions of devices. IoT handles large volume of data, process the huge data and performs useful control actions to make our life safe and simple. IoT evolves Human-human communication with thing-thing communication. IoT applications are not confined to a particular sector. In the fields such as health care, smart homes, industries, transportation, etc., the technology which is more influential is IoT. Energy sectors are now undergoing transformation. The transformation is driven by IOT. Green energy without IoT cannot be imagined in this energy sector. Renewable energy sources will be the major power producers among all the other sources due to the depletion of conventional energy sources. Among the renewable energy sources, Solar and Wind contributes more when compared to geothermal, biomass, etc. Renewable energy power production depends on environmental factors such as temperature, wind speed, light intensity etc. These factors affect the performance of energy conversion in renewable energy sources. Since our future generation will depend only on renewable energy, it becomes necessary for the researchers to integrate IOT to provide reliable and affordable energy. Renewable power generation helps in reducing the toxic level of gases which may be produced by thermal power stations during power generation. IoT brings about changes from generation to transmission to distribution. For example, let us compare the traditional grid with that of the smart grid. In the case of traditional one-way communication exists that is power produced from the power station is transmitted to the customer. The customer has to pay for the energy consumed. But smart grid has two-way communication. The customer has the capability to pay for the energy consumed only and if excess power produced can be transmitted to the grid. IoT helps in analyzing the demand as well the wastage of energy, helps in scheduling the load in order to reduce the cost. The sensors and data sciences with IOT helps in achieving the automation and intelligent operation of renewable energy farms, increases the efficiency and reliability of the farms to meet our future power demand.

2019 ◽  
pp. 0309524X1987403 ◽  
Author(s):  
Aleksey A Zhidkov ◽  
Andrey A Achitaev ◽  
Mikhail V Kashurnikov

The urgency of developing renewable power generation in Russia is associated with the presence of a large number of regions with a low degree of electrification. More than two-thirds of the territory of Russia is located in the area of decentralized power supply, where the main source of energy is imported diesel fuel or associated gas from local fields. At present, one of the directions for the development of renewable power generation in Russia is the implementation of a hybrid power supply system for autonomous power systems of remote regions. However, along with the possibility of using renewable energy sources, it is important for such regions to generate heat from co-generation of diesel power plants, since there is an urgent problem of heat supply for remote regions, especially located in the Far North of Russia. This article presents an analysis of the influence of using renewable energy sources in autonomous power systems on co-generation of diesel power plants.


Sources of energy for conventional power generation are limited and depleting ceaselessly owing to rising demand of power because of the social modernization, rising industrial growth, quick rate of infrastructure development and also technological innovation. Several developed countries have started the employment of renewable energy sources considerably to attenuate the greenhouse gases effects within the atmosphere and harmful emission. The rising demand of the power without any harmful and damaging issue, forces the eye of researchers towards renewable sources (like wind and solar) of energy. Therefore, it's minimum impact on the atmosphere. Renewable Energy sources are becoming the key contributors in the present society due to the increasing cost of oil products and decrease in the price of RES. By using natural resources energy sources like Solar and wind are providing green energy. Renewable Energy penetration is increasing worldwide day by day. Renewable power generation will introduce noticeable power quality challenges when integrated to power grid. From the aspect of RES, renewable energy generation is intermittent and non-dispatchable because of varied nature of RES. The most common PQ challenges on RE integration are frequency and voltage fluctuations in the power system caused by noncontrollable atmospheric condition and Harmonics that are introduced because of power electronic converters used in RE power generation. This paper presents an intensive literature review, conducted on emerging PQ issues owing to Solar and Wind energy systems integration and existing mitigation methods.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3860
Author(s):  
Priyanka Shinde ◽  
Ioannis Boukas ◽  
David Radu ◽  
Miguel Manuel de Manuel de Villena ◽  
Mikael Amelin

In recent years, the vast penetration of renewable energy sources has introduced a large degree of uncertainty into the power system, thus leading to increased trading activity in the continuous intra-day electricity market. In this paper, we propose an agent-based modeling framework to analyze the behavior and the interactions between renewable energy sources, consumers and thermal power plants in the European Continuous Intra-day (CID) market. Additionally, we propose a novel adaptive trading strategy that can be used by the agents that participate in CID market. The agents learn how to adapt their behavior according to the arrival of new information and how to react to changing market conditions by updating their willingness to trade. A comparative analysis was performed to study the behavior of agents when they adopt the proposed strategy as opposed to other benchmark strategies. The effects of unexpected outages and information asymmetry on the market evolution and the market liquidity were also investigated.


2021 ◽  
Vol 11 (13) ◽  
pp. 5907
Author(s):  
Valerii Havrysh ◽  
Antonina Kalinichenko ◽  
Anna Brzozowska ◽  
Jan Stebila

The European Union has set targets for renewable energy utilization. Poland is a member of the EU, and its authorities support an increase in renewable energy use. The background of this study is based on the role of renewable energy sources in improving energy security and mitigation of climate change. Agricultural waste is of a significant role in bioenergy. However, there is a lack of integrated methodology for the measurement of its potential. The possibility of developing an integrated evaluation methodology for renewable energy potential and its spatial distribution was assumed as the hypothesis. The novelty of this study is the integration of two renewable energy sources: crop residues and animal husbandry waste (for biogas). To determine agricultural waste energy potential, we took into account straw requirements for stock-raising and soil conservation. The total energy potential of agricultural waste was estimated at 279.94 PJ. It can cover up to 15% of national power generation. The spatial distribution of the agricultural residue energy potential was examined. This information can be used to predict appropriate locations for biomass-based power generation facilities. The potential reduction in carbon dioxide emissions ranges from 25.7 to 33.5 Mt per year.


Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Pavel Kirillov ◽  
Romney Duffey

It is well known that the electrical-power generation is the key factor for advances in any other industries, agriculture and level of living. In general, electrical energy can be generated by: 1) non-renewable-energy sources such as coal, natural gas, oil, and nuclear; and 2) renewable-energy sources such as hydro, wind, solar, biomass, geothermal and marine. However, the main sources for electrical-energy generation are: 1) thermal - primary coal and secondary natural gas; 2) “large” hydro and 3) nuclear. The rest of the energy sources might have visible impact just in some countries. Modern advanced thermal power plants have reached very high thermal efficiencies (55–62%). In spite of that they are still the largest emitters of carbon dioxide into atmosphere. Due to that, reliable non-fossil-fuel energy generation, such as nuclear power, becomes more and more attractive. However, current Nuclear Power Plants (NPPs) are way behind by thermal efficiency (30–42%) compared to that of advanced thermal power plants. Therefore, it is important to consider various ways to enhance thermal efficiency of NPPs. The paper presents comparison of thermodynamic cycles and layouts of modern NPPs and discusses ways to improve their thermal efficiencies.


Author(s):  
Sharmini Nakkela

Abstract: Modern study about utilizing energy from renewable energy sources was stimulus due to emerging oil crisis in older days due to uncontrolled use of conventional energy sources. Renewable Power Generation from wind and solar energy has become a significant proportion for the overall power generation in the grid. High penetration of Renewable Power Generation (RPG’s) effectreliable operation of bulk power system due to fluctuation of frequency and voltage of the network. The main objectives of high penetration of Renewable Power Generations in distribution system are Regulation of voltage, Mitigating voltage fluctuations due to flickers and Frequency control. The design and control of voltage regulation system using smart loads (SL’s) under large penetration of renewable energy system in distribution level is to be studied with the help of FACT devices like Static Compensator (STATCOM) and It is one of the fast active devices with accurate voltage regulation capability and most importantly for the sensitive/critical loads. Electric spring (ES) is proposed as compelling technique for guideline of framework voltage under fluctuating RPG's with next to no guide of correspondence framework [1]. It is a converter-based framework with self-commutated switches in span design, which is associated with non-basic burdens in series to go about as savvy load. These Smart Loads are controlled to direct voltage across basic burdens and hence partaking popular side administration. Expanded entrance of RPG’s, basically factor speed wind energy transformation framework is having impact on voltage and power quality [1][2]. In this paper, A contextual analysis of impact of variable speed wind energy framework on voltage is completed and which is demonstrated with fluctuating breeze speed. Execution examination of keen burdens are to be contrasted and existing receptive power compensator burdens and Improvement in voltage profile on test feeder is directed on a 3 Bus system and 15 Bus system. Keywords: Renewable energy system (RES), Electric spring (ES), STATCOM, Voltage Flicker, Smart load


Sign in / Sign up

Export Citation Format

Share Document