How to Improve Hospital Flows in the Context of the COVID Pandemic

2021 ◽  
Author(s):  
Paul-Eric Dossou ◽  
Luiza Foreste ◽  
Eric Misumi

In healthcare systems, the adoption of logistics 4.0 main technologies in the processes flows is essential to avoid unnecessary movements and manual work performed by people who could be performing tasks that require logical reasoning. In the context of the COVID pandemic, the adoption of new technologies to replace people in manual processes had become even more usual. This paper aims to demonstrate through simulation, the opportunities of improvement with lean manufacturing concepts and industry 4.0 technologies the hospital flows. After describing the problem and the need of improvements in hospital logistics, a literature review with concepts of Industry 4.0, Lean Manufacturing, and Logistics 4.0 will be presented. The hybrid approach used in the development of a decision aid tool that combines real data and methods of machine learning and problem-solving will be then, an example will be given for illustrating the concepts and methods elaborated.

Author(s):  
Sagil James ◽  
Alejandro Cervantes

Abstract Lean manufacturing practices focus on minimizing all forms of waste from the production system. The applicability of lean manufacturing concepts and principles has often been questioned in sectors including aerospace manufacturing primarily due to their high variety - low volume environments. The key challenges include the difficulty in changing the factory layout, lack of plant-specific manufacturing strategies, lack of benchmarking between manufacturing plants and non-existence of learning through experimentation culture. Consequently, the aerospace manufacturing industries have struggled to implement lean principles over the years successfully. Industry 4.0 is a new paradigm that is significantly influencing several manufacturing industries across the globe. Applying the concepts of Industry 4.0 along with the conventional lean transformation technology could potentially address these challenges. The focus of this research is to study the possibilities of integrating Industry 4.0 tools with existing lean manufacturing philosophies within the aerospace manufacturing sector in order to improve various aspects of manufacturing processes in a cyber-physical environment. A case study is performed considering a quality inspection department in a typical aerospace industry. The case study is simulated using discrete event simulation tool — Arena. The study found that a hybrid approach involving the holistic merger of the lean principles along with the Industry 4.0 tools known as Lean Industry 4.0 is the best way forward for the aerospace manufacturing sector. The outcomes of this research provide an understanding of the role of industry 4.0 paradigm and their implementation in several other high-technology and high-risk manufacturing sectors including life sciences, space, and defense industries.


2021 ◽  
Vol 16 (2) ◽  
pp. 122-134
Author(s):  
Pavol Zahoran ◽  
Ondrej Zizlavsky

Automation, robotics, Internet of Things and Big Data are currently a big challenge for businesses. However, they can also be a great opportunity. One of the corporate areas where new technologies can be used is controlling. In this research, the issue is narrowed down to the impact of new technologies on Enterprise Resource Planning (ERP) systems of companies, which are a basic tool of controlling in companies. The research analyses the possibilities of integrating elements of Industry 4.0 with ERP systems and the possibility of using data for corporate controlling. For this purpose, a literature review was carried out and gained results were further analysed according to the defined criteria. The outcome of the literature review is an essential current state analysis of the impact of new technologies on corporate ERP systems with regard to the company's controlling processes. This paper serves as a very first step in designing a systematic research study in area of controlling 4.0. Keywords: automation, controlling, Enterprise Resource Planning (ERP), Industry 4.0, management control, management accounting


2021 ◽  
Vol 32 (9) ◽  
pp. 285-303
Author(s):  
Adriana Ito ◽  
Torbjörn Ylipää ◽  
Per Gullander ◽  
Jon Bokrantz ◽  
Victor Centerholt ◽  
...  

PurposeResistance is expected to emerge with the implementation and use of new technologies in production systems. This work focuses on identifying sources of resistance to the use of Industry 4.0 technologies when managing production disturbances and suitable managerial approaches to deal with them.Design/methodology/approachA qualitative approach was chosen in this research. The authors conducted a literature review and a series of interviews. Thirty-one papers from the literature review were analysed, and 16 people from five different companies were interviewed.FindingsThe authors identified five different sources of resistance and three managerial approaches to dealing with them. The sources of resistance were based on (1) feelings of over-supervision, (2) unclear values, (3) feelings of inadequacy, (4) concerns about loss of power and jobs and (5) work overload. The three approaches to dealing with resistance are (1) communication, (2) participation and (3) training.Originality/valueThis work identifies the sources and strategies to deal with resistance to the use of Industry 4.0 technologies in the management of production disturbances. The managerial literature in this area is limited, and to the authors's knowledge, the specific sources for resistance and strategies to deal with that in this topic have not been systematically investigated before.


Author(s):  
Aomar Osmani ◽  
Massinissa Hamidi ◽  
Salah Bouhouche

Monitoring industrial infrastructures are undergoing a critical transformation with industry 4.0.  Monitoring solutions must follow the system behavior in real time and must adapt to its continuous change. We propose in this paper an autoencoder model-based approach for tracking abnormalities in industrial application. A set of sensors collects data from turbo-compressors and an original two-level machine learning LSTM autoencoder architecture defines a continuous nominal vibration model. Normalized thresholds (ISO 20816) between the model and the system generates a possible abnormal situation to diagnose. Experimental results, including hyper-parameter optimization on large real data and domain expert analysis, show that our proposed solution gives promising results. 


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 62
Author(s):  
Fatmir Azemi ◽  
Roberto Lujić ◽  
Goran Šimunović ◽  
Daniel Tokody

Recently, there have been done numerous investigations related to lean manufacturing techniques. However, very little has been reported about the implementation and selection of lean manufacturing in the Kosovo manufacturing industry. This article presents the application of lean tools through Kosovo manufacturing industries and the selection of the most useful lean techniques for developing a model for an innovative smart Kosovo enterprise which is our initiative in the process of preparing Kosovo enterprises for the new age of industry—Industry 4.0. After several visits through Kosovo enterprises, the literature review has noticed that there is no investigation in the selection and implementation of lean techniques and tools in Kosovo enterprises. The purpose was to understand how Kosovo manufacturing enterprises use lean techniques and which are the most useful techniques. Analyses have been done based on interviews and questionnaires. Seven basic lean techniques are selected based on the response from the questionnaire and representing basic lean tools for developing a model of a production system regarding Industry 4.0.


2021 ◽  
Vol 13 (10) ◽  
pp. 264
Author(s):  
Tuuli Katarina Lepasepp ◽  
William Hurst

Ever since the emergence of Industry 4.0 as the synonymous term for the fourth industrial revolution, its applications have been widely discussed and used in many business scenarios. This concept is derived from the advantages of internet and technology, and it describes the efficient synchronicity of humans and computers in smart factories. By leveraging big data analysis, machine learning and robotics, the end-to-end supply chain is optimized in many ways. However, these implementations are more challenging in heavily regulated fields, such as medical device manufacturing, as incorporating new technologies into factories is restricted by the regulations in place. Moreover, the production of medical devices requires an elaborate quality analysis process to assure the best possible outcome to the patient. Therefore, this article reflects on the benefits (features) and limitations (obstacles), in addition to the various smart manufacturing trends that could be implemented within the medical device manufacturing field by conducting a systematic literature review of 104 articles sourced from four digital libraries. Out of the 7 main themes and 270 unique applied technologies, 317 features and 117 unique obstacles were identified. Furthermore, the main findings include an overview of ways in which manufacturing could be improved and optimized within a regulated setting, such as medical device manufacturing.


2019 ◽  
Vol 11 (5) ◽  
pp. 1439 ◽  
Author(s):  
Leonilde Varela ◽  
Adriana Araújo ◽  
Paulo Ávila ◽  
Hélio Castro ◽  
Goran Putnik

Nowadays, Lean Manufacturing, Industry 4.0, and Sustainability are important concerns for the companies and in a general way for the society, principally, the influence of the two production philosophies, Lean Manufacturing and Industry 4.0, in the three main pillars of sustainability: economic, environmental, and social. According to the literature review done in this work, these relations are not well known and are dispersed by different sustainability’s criteria. To address this gap, this research proposes a structural equation model, with six hypotheses, to quantitatively measure the effects of Lean Manufacturing and Industry 4.0, in Sustainability. To statistically validate such hypotheses, we collected 252 valid questionnaires from industrial companies of Iberian Peninsula (Portugal and Spain). Results show that: (1) it is not conclusive that Lean Manufacturing is correlated with any of the sustainability pillars; and (2) Industry 4.0 shows a strong correlation with the three sustainability pillars. These results can contribute as an important decision support for the industrial companies and its stakeholders, even because not all the results are in line with other opinions and studies.


Author(s):  
Alexandre Helmann ◽  
Fernando Deschamps ◽  
Eduardo de Freitas Rocha Loures

Currently, production systems are receiving the application of more advanced, integrated and connected technologies to optimize the performance of their manufacturing processes. The new technological solutions demand architectures that support intelligent solutions for a new digitalized industry. However, production systems already in operation have difficulty in implementing these technologies. The existing barriers limit the availability of the direct integration of different systems contemplated in an automation system architecture. This article systematically reviews the existing literature to portray the characteristics of each architecture and that can guide the adoption of new technologies. Through this review, emerging reference architectures were identified, such as RAMI4.0, IIRA, IBM Industry 4.0 and NIST Smart Manufacturing. In conclusion, the article presents a framework for considering which model best fits with the new technological solutions.


Sign in / Sign up

Export Citation Format

Share Document