scholarly journals Evaluation of the Cytotoxic Activity of Biosynthesized Silver Nanoparticles Using Berberis vulgaris Leaf Extract

Author(s):  
Akbar Safipour Afshar ◽  
Fatemeh Saeid Nematpour

Background: Recently, due to the numerous applications of silver nanoparticles (AgNPs) in industry, various routes to synthesize them have been developed. Objectives: The current study was aimed at synthesizing silver nanoparticles by the leaf extract of Berberis vulgaris and evaluating the cytotoxic effects on human breast cancer MCF-7 cell line. Methods: The leaf extract of Berberis vulgaris and silver nitrate solution were used to synthesize silver nanoparticles. Ultraviolet (UV)-visible, Fourier-transform infrared, and X-ray diffraction analysis spectroscopy and transmission electron microscopy methods were used to characterize and confirm the nanoparticles’ synthesis. The cytotoxic activity of synthesized nanoparticles (0, 5,10, 20, 40 µg/mL) was also studied by MTT assay. Results: The results showed that Ag nanoparticles were polydisperse and spherical in shape and had a size of about 19.9 nm. Silver nanoparticles reduced the growth of cancerous cells based on time and concentration. The IC50 for MCF-7 cells at 48 hours was 20.27 µg/mL. Conclusions: The findings showed that synthesized nanoparticles have an appropriate cytotoxic effect on cancer cells. This impact may be due to the production of free radicals through the release of Ag ions.

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Hernane S. Barud ◽  
Thaís Regiani ◽  
Rodrigo F. C. Marques ◽  
Wilton R. Lustri ◽  
Younes Messaddeq ◽  
...  

Antimicrobial bacterial cellulose-silver nanoparticles composite membranes have been obtained by“in situ”preparation of Ag nanoparticles from hydrolytic decomposition of silver nitrate solution using triethanolamine as reducing and complexing agent. The formation of silver nanoparticles was evidenced by the X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and absorption in the UV-Visible (350 nm to 600 nm). Thermal and mechanical properties together with swelling behavior for water were considered. TEA concentration was observed to be important in order to obtain only Ag particles and not a mixture of silver oxides. It was also observed to control particle size and amount of silver contents in bacterial cellulose. The composite membranes exhibited strong antimicrobial activity against Gram-negative and Gram-positive bacteria.


2021 ◽  
Vol 10 (1) ◽  
pp. 606-613
Author(s):  
Mahsa Eshghi ◽  
Asa Kamali-Shojaei ◽  
Hamideh Vaghari ◽  
Yahya Najian ◽  
Zahra Mohebian ◽  
...  

Abstract Due to high antimicrobial activity against numerous microorganisms, silver nanoparticles (AgNPs) are being utilized in various areas. Microwave-accelerated AgNPs synthesis using Corylus avellana leaf extract was evaluated. Based on randomly central composite design, 13 mixture solutions containing different amounts of the prepared extract (0.10–0.90 mL) and 1 mM silver nitrate solution (15–25 mL) were prepared and exposed to microwave irradiation for 180 s. Response surface methodology was utilized to evaluate the effects of the two independent variables on particle size and concentration of the synthesized AgNPs, as manifested in the place of broad emission peak (λ max) and its absorbance unit, respectively. Fourier transform infrared spectroscopy analysis indicated that the two hydroxyl and carboxylic acid functional groups with reducing activity existed in the prepared extract. Dynamic light scattering and transmission electron microscopy analyses revealed that the formed spherical AgNPs using optimum amounts of C. avellana leaf extract (0.9 mL) and 1 mM silver nitrate solution (25 mL) had minimum particle size (103.5 nm) and polydispersity index (PDI) (0.209), and maximum concentration (140 ppm) and zeta potential (−21.8 mV). Results indicated that the formed AgNPs had high fungicidal effects against the spoiled fungi of Colletotrichum coccodes and Penicillium digitatum.


2018 ◽  
Vol 772 ◽  
pp. 73-77
Author(s):  
Ruelson S. Solidum ◽  
Arnold C. Alguno ◽  
Rey Capangpangan

We report on the green synthesis of silver nanoparticles utilizing theP.purpureumleaf extract. Controlling the surface plasmon absorption of silver nanoparticles was achieved by regulating the amount of extract concentration and the molarity of silver nitrate solution. The surface plasmon absorption peak is found at around 430nm. The surface plasmon absorption peak have shifted to lower wavelength as the amount of extract is increased, while plasmon absorption peak shifts on a higher wavelength as the concentration of silver nitrate is increased before it stabilized at 430nm. This can be explained in terms of the available nucleation sites promoted by the plant extract as well as the available silver ions present in silver nitrate solution.


Author(s):  
Inbathamizh L ◽  
Kalpana V ◽  
Revathi Yadav K

With the increase in the potential applications of nanoparticles in pharma and various fields, nanoparticle research is attracting more attention. Though several chemical and physical methods are being used for the synthesis of metal nanoparticles, they are associated with several disadvantages. Couroupita guianensis is a traditional plant with medicinal values. The focus of the study was to follow a green chemistry route to synthesize silver nanoparticles (AgNPs) using the leaf extract of Couroupita guianensis as a reductant and stabilizing agent. The boiled aqueous leaf extract with silver nitrate solution on exposure to sunlight showed the maximum absorbance at 430nm indicating the synthesis of AgNPs. Ultra Violet (UV)-Visible spectroscopy, Scanning Electron Microscopy (SEM), and Fourier Transform Infrared spectroscopy (FTIR) techniques were used for the characterization of AgNPs. The synthesized AgNPs were found to be spherical and 4.44 – 40.20nm in size. They also seemed to be capped with the significant functional groups present in the leaf extract. Thus, the study suggested Couroupita guianensis mediated green synthesis of AgNPs as an efficient and eco-friendly approach with substantial advantages over the conventional methods. The process could be further scaled-up for mass production and wider applications of AgNPs.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. Vanaja ◽  
K. Paulkumar ◽  
M. Baburaja ◽  
S. Rajeshkumar ◽  
G. Gnanajobitha ◽  
...  

Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by usingMorinda tinctorialeaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time.


2016 ◽  
Vol 5 (6) ◽  
Author(s):  
Brajesh Kumar ◽  
Kumari Smita ◽  
Luis Cumbal

AbstractThe present report summarizes an eco-friendly approach for the biosynthesis of silver nanoparticles (AgNPs) using the leaf extract of lavender. Initially, the synthesis of AgNPs was visually observed by the appearance of a wine red color. The optical property, morphology, and structure of as-synthesized AgNPs were characterized by UV-visible spectroscopy, dynamic light scattering, transmission electron microscopy, and X-ray diffraction analyses. All characterization data revealed the formation of crystalline and spherical AgNPs (Ag/Ag


2013 ◽  
Vol 755 ◽  
pp. 91-96
Author(s):  
A. Ruíz-Baltazar ◽  
R. Esparza ◽  
R. Pérez ◽  
G. Rosas

In this work, a spectroscopic and structural characterization of diatomaceous earth-montmorillonite clays after impregnated with silver nanoparticles were carried out. The silver nanoparticles were synthesized by chemical reduction with sodium borohydride starting from silver nitrate solution. The obtained nanoparticles were stabilized with polyvinyl-pyrrolidone as a surface agent. In order to perform the homogeneous nucleation process, Ag nanoparticles solutions at concentrations of 1, 2 and 4 parts per million were magnetically mixed in the porous material. Additionally, we assessed the porous material adsorption ability of silver by atomic absorption spectroscopy. The quantity of Ag nanoparticles adsorbed by the diatomaceous earth and the adsorption rate as function of the concentration of Ag nanoparticles were established. Other complementary techniques such as X-ray diffraction, infrared spectroscopy and transmission and scanning electron microscopy were used.


2015 ◽  
Vol 832 ◽  
pp. 123-131
Author(s):  
E. Thanikaivalan ◽  
R. Jothilakshmi ◽  
P. Murugakoothan

Silver nanoparticles with different radii were synthesized using silver nitrate solution added with sodium borohydride solution at different ratios. The synthesized silver nanoparticles of radii 25.3 nm, 31 nm, 33.6 nm and 37.1 nm were characterized by transmission electron microscopy (TEM) and UV-vis absorption spectroscopy. The synthesized silver nanoparticles exhibit spherical morphology for all radii. The silver nanoparticles exhibit the plasmon resonance band between 390 nm – 400 nm. The optical trapping effect of Gaussian beam acting on a silver nanoparticle in Rayleigh regime was studied. The optical scattering and optical gradient forces were calculated for silver nanoparticles of different radii.


2013 ◽  
Vol 1 (04) ◽  
pp. 16-24 ◽  
Author(s):  
Anu Kumar ◽  
Kuldeep Kaur ◽  
Sarika Sharma

The present study reports the synthesis of silver nanoparticle using Morus nigra leaf extract were used as reducing agent for reduction of silver nitrate solution. The synthesis of silver nanoparticles was analyzed by UV-Visible spectroscopy, Scanning Electron Microscopy. The SEM analysis has shown that size of silver nanoparticles synthesized from leaves extract of M.nigra was 200 nm and seems to be spherical in morphology. Morphology of chemically synthesized silver nanoparticles is nearly spherical and of size ranges from 300-500 nm. The average particle size analyzed from SEM analysis was observed to be 350 nm. This article has discussed the synthesis of silver nanoparticles generated from plant extract, characterization and antibacterial analysis. In this study the antibacterial activity was examined against six MTCC cultures collected from IMTECH Chandigarh, Including both gram positive and gram negative bacteria such as P.aeruginosa, S.aureus, B.subtilis, E.coli, P.flourescens and Streptococus mutans. Out of these strains the antimicrobial activity of the silver nanoparticles showed maximum zone of inbhition against P.flourescens (22 mm), P.aeruginosa (19 mm), S.aureus (18 mm) and least effective against E.coli (15mm). In contrast chemically synthesized silver nanoparticles were found most effective against S.aureus (13 mm) and B.subtilis (12mm) and almost ineffective against Streptococcus mutans (6 mm) and P.flourescens (4 mm). In the concluding remarks, the silver nanoparticles synthesized using M.nigra leaves extract would be a better antimicrobial effective against various bacterial species.


2015 ◽  
Vol 4 (6) ◽  
Author(s):  
Kaushik Roy ◽  
Chandan K. Sarkar ◽  
Chandan K. Ghosh

AbstractIn this study, we for the first time reported green synthesis of silver nanoparticles from silver nitrate solution using leaf extract of


Sign in / Sign up

Export Citation Format

Share Document