scholarly journals Synthesis, characterization and antibacterial potential of silver nanoparticles by Morus nigra leaf extract

2013 ◽  
Vol 1 (04) ◽  
pp. 16-24 ◽  
Author(s):  
Anu Kumar ◽  
Kuldeep Kaur ◽  
Sarika Sharma

The present study reports the synthesis of silver nanoparticle using Morus nigra leaf extract were used as reducing agent for reduction of silver nitrate solution. The synthesis of silver nanoparticles was analyzed by UV-Visible spectroscopy, Scanning Electron Microscopy. The SEM analysis has shown that size of silver nanoparticles synthesized from leaves extract of M.nigra was 200 nm and seems to be spherical in morphology. Morphology of chemically synthesized silver nanoparticles is nearly spherical and of size ranges from 300-500 nm. The average particle size analyzed from SEM analysis was observed to be 350 nm. This article has discussed the synthesis of silver nanoparticles generated from plant extract, characterization and antibacterial analysis. In this study the antibacterial activity was examined against six MTCC cultures collected from IMTECH Chandigarh, Including both gram positive and gram negative bacteria such as P.aeruginosa, S.aureus, B.subtilis, E.coli, P.flourescens and Streptococus mutans. Out of these strains the antimicrobial activity of the silver nanoparticles showed maximum zone of inbhition against P.flourescens (22 mm), P.aeruginosa (19 mm), S.aureus (18 mm) and least effective against E.coli (15mm). In contrast chemically synthesized silver nanoparticles were found most effective against S.aureus (13 mm) and B.subtilis (12mm) and almost ineffective against Streptococcus mutans (6 mm) and P.flourescens (4 mm). In the concluding remarks, the silver nanoparticles synthesized using M.nigra leaves extract would be a better antimicrobial effective against various bacterial species.

Author(s):  
Liem Le ◽  
The Nguyen ◽  
Dieu Nguyen

In this work, silver nanoparticles (AgNPs) were synthesized rapidly and eco-friendlily using the extract of Mulberry leaves and aqueous solution of silver nitrate without any toxic chemical [1,2]. The Mulberry leaves extract acts as both reducing agent and stabilizing agent. The UV-Vis spectrum shows peak at 430 nm. The TEM image of synthesized AgNPs sample shows spherical shaped particles whose size range from 15 to 20 nm. TEM image of nano silver solution sample synthesized by microwave assisted method shows nearly spherical particles with an average particle size of 10 nm. The absorption UV-vis spectrum of silver nanoparticles synthesized by microwave assisted method (AgNPsmw) shows a sharp absorption band around 415 nm. After two month storage of AgNPsmw, the absorption spectrum of AgNPsmw was taken again. The UV-Vis spectrum shows negligible peak changes of silver nanoparticles have occurred after two months of storage. The synthesized AgNPs material could be used as an antimicrobial, used in the field of textile and in wastewater treatment.


2018 ◽  
Vol 55 (1A) ◽  
pp. 45
Author(s):  
Le Thi An Nhien

In this study, silver nanoparticles (AgNPs) were prepared by gamma rays irradiation of 1.0, 2.5, 5.0 and 10 mM silver nitrate solution using chitosan as a stabilizer. UV spectra, morphology and size of AgNPs irradiated at different doses were characterized by using UV-vis spectrophotometer and TEM images. The obtained results indicated that the average size of AgNPs increased by the increase of silver concentration in irradiated solution or the degree of acetylation of chitosan, while the increase of chitosan concentration was found to be a functional key for reducing the average size of particles in AgNPs product. In vitro test, AgNPs inhibited the growth of Corynespora cassiicola. In particularly, the inhibitory efficiency of AgNPs on the growth of C. cassiicola on rubber leaf extract media increased from 52.1 to 100 % when the average particle size of particles in AgNPs product decreased from 15 to 5 nm at the concentration of 50 ppm. In addition, the increase of AgNPs concentration from 10 to 90 ppm also enhanced the antifungal activity to be from 6.3 to 100 %, respectively. It suggests that the silver nanoparticles/chitosan (AgNPs/chitosan) synthesized by γ-rays irradiation method is a very promising fungicidal product applying for treating C. cassiicola, a serious pathogen fungus on rubber trees.


2019 ◽  
Vol 4 (2) ◽  
pp. 86
Author(s):  
Astuti Amin ◽  
Nur Khairi ◽  
Eko Allo

The research of manufacturing chitosan from shrimp shell waste , and their use as a stabilizer in the manufacture of silver nanoparticles has been done. The aim of the research was to synthesize silver nanoparticles using chitosan as a stabilizer by chemical reduction method and determine the effect of chitosan concentration on the stability of Ag nanoparticles. In this study, the raw material used is shrimp shell powder and then processed in several stages, eliminating proteins, demineralization, and deacetylation. Chitosan obtained is 16.4 % of shrimp shell powder, with a degree of deacetylation of 85 %. Chitosan is used to synthesize silver nanoparticles as a reducing agent of silver ions in silver nitrate solution and is expected to be stabilizer. Sample containing 45 mg of chitosan and 1000 ppm AgNO3 has 421,60 nm of maximum wavelength, and the average particle size is 154.07 nm.


2021 ◽  
Vol 9 (3) ◽  
pp. 220-226
Author(s):  
Bishow Regmi ◽  
Tirtha Raj Binadi ◽  
Sarb Narayan Jha ◽  
Rajib Kumar Chaudhary ◽  
Bhoj Raj Poudel ◽  
...  

Silver nanoparticles (AgNPs) have been synthesized by green synthesis using Azadirachta indica leaf extract as both reducing and stabilizing agent. Synthesis of colloidal AgNPs was monitored by UV- visible spectroscopy. The UV- visible spectrum showed a peak at 455 nm corresponding to the plasmon absorbance of the silver nanoparticles. Crystallite structure of silver nanoparticles was studied using X-ray diffraction (XRD) analysis which revealed the face-centered cubic structure (FCC) with average particle size of 8.9 nm, calculated using Debye-Scherrer’s equation. Transmission electron microscopy (TEM) image revealed the agglomeration of small grain with particle size ranging from 2 to 14 nm. FCC crystalline nature was also evident from selected area electron diffraction (SAED) analysis. High purity of as-synthesized AgNPs was analyzed using energy dispersive X-ray (EDX) spectroscopy. Band gap energy was calculated to be 2.7 eV from UV- Visible spectra. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was stabilized by AgNPs which reveals its antioxidant efficacy. Well diffusion method showed 7 mm to 12 mm zone of inhibition (ZOI) against Gram-positive and Gram-negative bacteria, respectively confirming the antibacterial potential of AgNPs. Int. J. Appl. Sci. Biotechnol. Vol 9(3): 220-226.


2018 ◽  
Vol 772 ◽  
pp. 73-77
Author(s):  
Ruelson S. Solidum ◽  
Arnold C. Alguno ◽  
Rey Capangpangan

We report on the green synthesis of silver nanoparticles utilizing theP.purpureumleaf extract. Controlling the surface plasmon absorption of silver nanoparticles was achieved by regulating the amount of extract concentration and the molarity of silver nitrate solution. The surface plasmon absorption peak is found at around 430nm. The surface plasmon absorption peak have shifted to lower wavelength as the amount of extract is increased, while plasmon absorption peak shifts on a higher wavelength as the concentration of silver nitrate is increased before it stabilized at 430nm. This can be explained in terms of the available nucleation sites promoted by the plant extract as well as the available silver ions present in silver nitrate solution.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Indrawati Patabang ◽  
Syahruddin Kasim ◽  
Paulina Taba

Silver nanoparticles have been synthesized using kluwak leaf extract (Pangium edule Reinw) as bioreductor and antioxidant activity assay. The nanoparticles formed were monitored by observing UV-Vis absorption and characterized by using FTIR, PSA, XRD and SEM instruments. The result of functional group characterization with FTIR show that the functional groups OH, C = O, C-O and CH2 act as Ag+ reducing agent. The size of silver nanoparticles was determined by using Particle Size Analyzer (PSA) and the result show average particle size distribution of 93.2 nm. Morphology of AgNp were observed by Scanning Electron Microscope (SEM) and X-Ray Difraction (XRD) analysis show result of 51,78 nm. The antioxidant activity was shown by in kluwak leaf extract and silver nanoparticles with IC50 values respectively 831,33 ppm dan 1493,09 ppm.


Author(s):  
Inbathamizh L ◽  
Kalpana V ◽  
Revathi Yadav K

With the increase in the potential applications of nanoparticles in pharma and various fields, nanoparticle research is attracting more attention. Though several chemical and physical methods are being used for the synthesis of metal nanoparticles, they are associated with several disadvantages. Couroupita guianensis is a traditional plant with medicinal values. The focus of the study was to follow a green chemistry route to synthesize silver nanoparticles (AgNPs) using the leaf extract of Couroupita guianensis as a reductant and stabilizing agent. The boiled aqueous leaf extract with silver nitrate solution on exposure to sunlight showed the maximum absorbance at 430nm indicating the synthesis of AgNPs. Ultra Violet (UV)-Visible spectroscopy, Scanning Electron Microscopy (SEM), and Fourier Transform Infrared spectroscopy (FTIR) techniques were used for the characterization of AgNPs. The synthesized AgNPs were found to be spherical and 4.44 – 40.20nm in size. They also seemed to be capped with the significant functional groups present in the leaf extract. Thus, the study suggested Couroupita guianensis mediated green synthesis of AgNPs as an efficient and eco-friendly approach with substantial advantages over the conventional methods. The process could be further scaled-up for mass production and wider applications of AgNPs.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. Vanaja ◽  
K. Paulkumar ◽  
M. Baburaja ◽  
S. Rajeshkumar ◽  
G. Gnanajobitha ◽  
...  

Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by usingMorinda tinctorialeaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time.


Author(s):  
SNEHA THAKUR ◽  
KRISHNA MOHAN G

Objective: The main objective of the research work is to evaluate the antityrosinase potential of onion DNA silver nanoparticles (AgNPs). Methods: The onions were procured from the local market and DNA was extracted from onions using detergent and methylated spirit. The isolated DNA was selected for synthesis of AgNPs which acts as capping and reducing agent. About 10 ml of the DNA extract was added to 90 ml of 0.1 N silver nitrate solution. After 24 h incubation, the solution turned dark brown, which indicates the formation of AgNPs. The synthesized DNA AgNPs were characterized by ultraviolet-visible, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) studies. Results: The results revealed that the particles were uniform in shape with face-centered cubic structure. The particles are 153±20.4 nm in size and were no signs of agglomeration measured by DLS studies. The FTIR spectroscopy revealed B form of DNA along with strong N-H stretching, C=N stretching, and also asymmetric vibrations of phosphate groups characteristic for DNA molecule. The XRD studies revealed the face-centered cubic structure. SEM studies revealed the spherical structure with average particle size of 150±0.1 nm for single DNA nanoparticles. The onion DNA AgNPs were further investigated for its antityrosinase activity against the standard kojic acid and were to have anticancer potential nearer to the standard. Conclusion: From the results, it is evident that the synthesized onion DNA AgNPs have antityrosinase potential and can be further investigated for in vivo anticancer potential in future.


2021 ◽  
Vol 53 (03) ◽  
pp. 190-200
Author(s):  
Sarita Kumar ◽  

Introduction: Global rise in the Aedes-borne diseases and harmful effects of synthetic insecticides has diverted research to explore secondary metabolites in plants as mosquito control agent in the form of nanoparticles. Current study investigated Clitoria ternatea-mediated nanoparticles against Aedes aegypti. Methods: The aqueous and hexane leaf extracts of C. ternatea were assayed against Ae. aegypti early fourth instars. The extract-mediated silver nanocomposites (AgNCs) were synthesized after optimizing the volume and concentration of silver nitrate solution. The synthesis was tracked by the colour change of reaction mixture from pale yellow to dark brown followed by monitoring with UV-Visible spectroscopy and Dynamic Light Scattering. Results: The biosynthesis of 3 mM, 4 mM and 5 mM AgNCs was traced at 438, 401 and 407 nm, respectively. The average particle size distribution ranged from 34.62 to 60.64 nm and polydispersity index was 0.6-0.7. The 24 h larval exposure with aqueous and hexane leaf extracts demonstrated respective LC50 values of 53.057 and 42.179 mg/L, which decreased significantly on larvicidal assay with NCs. The 5mM AgNCs showed the maximum efficiency with LC50 of 10.317 mg/L after 24 h. Scanning and transmission electron microscopy images demonstrated a spherical, poly-dispersed structure with diameter in the 1-27 nm range. The assays against non-targets; Moina and Cyclops ascertained the eco-safety of NCs. Conclusion: The study demonstrated the C. ternatea leaf extract as possible effective mosquito nano-larvicide, alternate to traditional insecticides. Field studies, which could not be held due to the current pandemic, would further ascertain the possible use of these NCs against Aedes larvae.


Sign in / Sign up

Export Citation Format

Share Document