Environmental controls on water use efficiency of a poplar plantation under different soil water conditions

2013 ◽  
Vol 33 (5) ◽  
pp. 1465-1474
Author(s):  
周洁 ZHOU Jie ◽  
张志强 ZHANG Zhiqiang ◽  
孙阁 SUN Ge ◽  
方显瑞 FANG Xianrui ◽  
查同刚 ZHA Tonggang ◽  
...  
2020 ◽  
Vol 248 ◽  
pp. 107718 ◽  
Author(s):  
Li Zhang ◽  
Minfei Yan ◽  
Hongbing Li ◽  
Yuanyuan Ren ◽  
Kadambot HM Siddique ◽  
...  

2016 ◽  
Vol 46 (7) ◽  
pp. 1145-1150 ◽  
Author(s):  
Daniel Fonseca de Carvalho ◽  
Dionizio Honório de Oliveira Neto ◽  
Luiz Fernando Felix ◽  
José Guilherme Marinho Guerra ◽  
Conan Ayade Salvador

ABSTRACT: The aim of the present study was to evaluate the effect of different irrigation depths on the yield, water use efficiency (WUE), and yield response factor (Ky) of carrot (cv. 'Brasília') in the edaphoclimatic conditions of Baixada Fluminense, RJ, Brazil. Field trials were conducted in a Red-Yellow Argisol in the 2010-2011period. A randomized block design was used, with 5 treatments (depths) and 4 replicates. Depths were applied by drippers with different flow rates, and the irrigation was managed by time domain reflectometry (TDR) technique. The reference (ETo) and crop (ETc) evapotranspiration depths reached 286.3 and 264.1mm in 2010, and 336.0 and 329.9mm in 2011, respectively. The root yield varied from 30.4 to 68.9t ha-1 as a response to treatments without irrigation and 100% replacement of the soil water depth, respectively. Values for WUE in the carrot crop varied from 15 to 31kg m-3 and the mean Ky value was 0.82. The mean values for Kc were obtained in the initial (0.76), intermediate (1.02), and final (0.96) stages. Carrot crop was influenced by different water depths (treatments) applied, and the highest value for WUE was obtained for 63.4% of soil water replacement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fei Li ◽  
Dagang Guo ◽  
Xiaodong Gao ◽  
Xining Zhao

Elevated atmospheric CO2 concentrations ([eCO2]) and soil water deficits significantly influence gas exchange in plant leaves, affecting the carbon-water cycle in terrestrial ecosystems. However, it remains unclear how the soil water deficit modulates the plant CO2 fertilization effect, especially for gas exchange and leaf-level water use efficiency (WUE). Here, we synthesized a comprehensive dataset including 554 observations from 54 individual studies and quantified the responses for leaf gas exchange induced by e[CO2] under water deficit. Moreover, we investigated the contribution of plant net photosynthesis rate (Pn) and transpiration rates (Tr) toward WUE in water deficit conditions and e[CO2] using graphical vector analysis (GVA). In summary, e[CO2] significantly increased Pn and WUE by 11.9 and 29.3% under well-watered conditions, respectively, whereas the interaction of water deficit and e[CO2] slightly decreased Pn by 8.3%. Plants grown under light in an open environment were stimulated to a greater degree compared with plants grown under a lamp in a closed environment. Meanwhile, water deficit reduced Pn by 40.5 and 37.8%, while increasing WUE by 24.5 and 21.5% under ambient CO2 concentration (a[CO2]) and e[CO2], respectively. The e[CO2]-induced stimulation of WUE was attributed to the common effect of Pn and Tr, whereas a water deficit induced increase in WUE was linked to the decrease in Tr. These results suggested that water deficit lowered the stimulation of e[CO2] induced in plants. Therefore, fumigation conditions that closely mimic field conditions and multi-factorial experiments such as water availability are needed to predict the response of plants to future climate change.


Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 14 ◽  
Author(s):  
Maricar Aguilos ◽  
Clément Stahl ◽  
Benoit Burban ◽  
Bruno Hérault ◽  
Elodie Courtois ◽  
...  

Warmer and drier climates over Amazonia have been predicted for the next century with expected changes in regional water and carbon cycles. We examined the impact of interannual and seasonal variations in climate conditions on ecosystem-level evapotranspiration (ET) and water use efficiency (WUE) to determine key climatic drivers and anticipate the response of these ecosystems to climate change. We used daily climate and eddyflux data recorded at the Guyaflux site in French Guiana from 2004 to 2014. ET and WUE exhibited weak interannual variability. The main climatic driver of ET and WUE was global radiation (Rg), but relative extractable water (REW) and soil temperature (Ts) did also contribute. At the seasonal scale, ET and WUE showed a modal pattern driven by Rg, with maximum values for ET in July and August and for WUE at the beginning of the year. By removing radiation effects during water depleted periods, we showed that soil water stress strongly reduced ET. In contrast, drought conditions enhanced radiation-normalized WUE in almost all the years, suggesting that the lack of soil water had a more severe effect on ecosystem evapotranspiration than on photosynthesis. Our results are of major concern for tropical ecosystem modeling because they suggest that under future climate conditions, tropical forest ecosystems will be able to simultaneously adjust CO2 and H2O fluxes. Yet, for tropical forests under future conditions, the direction of change in WUE at the ecosystem scale is hard to predict, since the impact of radiation on WUE is counterbalanced by adjustments to soil water limitations. Developing mechanistic models that fully integrate the processes associated with CO2 and H2O flux control should help researchers understand and simulate future functional adjustments in these ecosystems.


2012 ◽  
Vol 59 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
B. Wang ◽  
W. Liu ◽  
Q. Xue ◽  
T. Dang ◽  
C. Gao ◽  
...  

The objective of this study was to investigate the effect of nitrogen (N) management on soil water recharge, available soil water at sowing (ASWS), soil water depletion, and wheat (Triticum aestivum L.) yield and water use efficiency (WUE) after long-term fertilization. We collected data from 2 experiments in 2 growing seasons. Treatments varied from no fertilization (CK), single N or phosphorus (P), N and P (NP), to NP plus manure (NPM). Comparing to CK and single N or P treatments, NP and NPM reduced rainfall infiltration depth by 20–60 cm, increased water recharge by 16–21 mm, and decreased ASWS by 89–133 mm in 0–300 cm profile. However, crop yield and WUE continuously increased in NP and NPM treatments after 22 years of fertilization. Yield ranged from 3458 to 3782 kg/ha in NP or NPM but was 1246–1531 kg/ha in CK and single N or P. WUE in CK and single N or P treatments was < 6 kg/ha/mm but increased to 12.1 kg/ha/mm in a NP treatment. The NP and NPM fertilization provided benefits for increased yield and WUE but resulted in lower ASWS. Increasing ASWS may be important for sustainable yield after long-term fertilization.


Sign in / Sign up

Export Citation Format

Share Document