Relationship between root forks and branch angle of Tamarix ramosissima at different stand ages in oasis of Jinta County

2021 ◽  
Vol 41 (5) ◽  
Author(s):  
白雪,赵成章,康满萍 BAI Xue
Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2791
Author(s):  
Pengyan Su ◽  
Mingjun Zhang ◽  
Deye Qu ◽  
Jiaxin Wang ◽  
Yu Zhang ◽  
...  

As a species for ecological restoration in northern China, Tamarix ramosissima plays an important role in river protection, flood control, regional climate regulation, and landscape construction with vegetation. Two sampling sites were selected in the hillside and floodplain habitats along the Lanzhou City, and the xylems of T. ramosissima and potential water sources were collected, respectively. The Bayesian mixture model (MixSIAR) and soil water excess (SW-excess) were applied to analyze the relationship on different water pools and the utilization ratios of T. ramosissima to potential water sources in two habitats. The results showed that the slope and intercept of local meteoric water line (LMWL) in two habitats were smaller compared with the global meteoric water line (GMWL), which indicated the existence of drier climate and strong evaporation in the study area, especially in the hillside habitat. Except for the three months in hillside, the SW-excess of T. ramosissima were negative, which indicated that xylems of T. ramosissima are more depleted in δ2H than the soil water line. In growing seasons, the main water source in hillside habitat was deep soil water (80~150 cm) and the utilization ratio was 63 ± 17% for T. ramosissima, while the main water source in floodplain habitat was shallow soil water (0~30 cm), with a utilization ratio of 42.6 ± 19.2%, and the water sources were different in diverse months. T. ramosissima has a certain adaptation mechanism and water-use strategies in two habitats, and also an altered water uptake pattern in acquiring the more stable water. This study will provide a theoretical basis for plant water management in ecological environment protection in the Loess Plateau.


1990 ◽  
Vol 43 (1-2) ◽  
pp. 37-45 ◽  
Author(s):  
I.R. Dann ◽  
P.D. Mitchell ◽  
P.H. Jerie
Keyword(s):  

Oecologia ◽  
1997 ◽  
Vol 111 (1) ◽  
pp. 12-18 ◽  
Author(s):  
James R. Cleverly ◽  
Stanley D. Smith ◽  
Anna Sala ◽  
Dale A. Devitt

2005 ◽  
Vol 15 (6) ◽  
pp. 2072-2083 ◽  
Author(s):  
Theodore A. Kennedy ◽  
Jacques C. Finlay ◽  
Sarah E. Hobbie

2007 ◽  
Vol 67 (4) ◽  
pp. 503-509 ◽  
Author(s):  
Paul Evangelista ◽  
Sunil Kumar ◽  
Thomas J. Stohlgren ◽  
Alycia W. Crall ◽  
Gregory J. Newman

2018 ◽  
Vol 48 (9) ◽  
Author(s):  
Lucas De Ross Marchioretto ◽  
Andrea De Rossi ◽  
Leonardo Oliboni do Amaral ◽  
Ana Maria Alves de Souza Ribeiro

ABSTRACT: Until few years ago there were limited options of apple rootstocks commercially available for Brazilian growers; although, new series of Geneva® rootstocks introduced recently present desirable features such as vigor control and wider lateral branch angle. On the main apple producing regions of Brazil, intermittent rainfall eventually occurs and waterlogged condition is frequent especially in high clay oxisols; in addition, little is known about the tolerance of rootstocks M.9, Marubakaido/M.9 interstock, G.202, G.213 and G.814 to waterlogging. Thus, the objective of this experiment was to evaluate the tolerance of these rootstocks to short-term waterlogging on root and aerial parameters. Potted ‘Maxi Gala’ apple plants were kept under 48 hours of waterlogging weekly throughout 19 weeks to be compared with a normal hydric condition control. The evaluated variables were: leaf, stem and root dry matter, number and length of new root emission, and number of leaves, mean leaf size and chlorophyll content. Rootstocks G.202, G.814 and Marubakaido/M.9 interstock presented more tolerance to waterlogging, and the main defense mechanism was the emission of new adventitious roots.


2021 ◽  
Author(s):  
Álvaro Montesinos ◽  
Chris Dardick ◽  
María José Rubio-Cabetas ◽  
Jérôme Grimplet

Almond breeding programs aimed at selecting cultivars adapted to intensive orchards have recently focused on the optimization of tree architecture. This multifactorial trait is defined by numerous components controlled by processes such as hormonal responses, gravitropism and light perception. Gravitropism sensing is crucial to control the branch angle and therefore, the tree habit. A gene family, denominated IGT family after a share conserved domain, has been described as involved in the regulation of branch angle in several species, including rice and Arabidopsis, and even in fruit trees like peach. Here we identified six members of this family in almond: LAZY1 , LAZY2 , TAC1 , DRO1 , DRO2 , IGT-like . After analyzing their protein sequences in forty-one almond cultivars and wild species, little variability was found, pointing a high degree of conservation in this family. Gene expression was analyzed in fourteen cultivars of agronomical interest comprising diverse tree habit phenotypes. Only LAZY1 , LAZY2 and TAC1 were expressed in almond shoot tips during the growing season. No relation was established between the expression profile of these genes and the tree habit. However, some insight has been gained in how LAZY1 and LAZY2 are regulated, identifying the IPA1 almond homologues and other transcription factors involved in hormonal responses as regulators of their expression. Besides, we have found various polymorphisms that could not be discarded as involved in a potential polygenic origin of regulation of architectural phenotypes. Therefore, we have established that unlike many species, IGT family genes do not play a critical role in the control of tree habit in currently commercialized almond cultivars, with other gene families contributing to the variability of these traits.


2015 ◽  
Vol 39 (11) ◽  
pp. 1062-1070 ◽  
Author(s):  
ZHENG Hui-Ling ◽  
◽  
ZHAO Cheng-Zhang ◽  
XU Ting ◽  
DUAN Bei-Bei ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document