scholarly journals Effects of using soybean protein emulsion as a meat substitute for chicken breast on physicochemical properties of Vienna sausage

Author(s):  
Kyu-Min Kang ◽  
Sol-Hee Lee ◽  
Hack-Youn Kim
Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 30
Author(s):  
Yuya Arai ◽  
Katsuyoshi Nishinari ◽  
Takao Nagano

Okara, which is used in the production of tofu and soy milk, is rich in dietary fibers (DFs) and phytochemicals such as soy isoflavones and soyasaponins. Despite its nutritive value, okara is scarcely used as a food source, as the DFs in okara are mostly insoluble. Thus, improving the physicochemical properties of okara for various food applications is of great importance. Here, okara were atomized using a wet-type grinder (WG) that is used to produce nanocelluloses (NC). We treated 2 wt% okara with the WG by different passages (1, 3, and 5 times). The particle size distribution (PSD) and viscosity of WG-treated okara decreased and increased, respectively, with different passages. The five time-WG treated okara also dispersed in water homogeneously after 24 h, whereas untreated okara did not. The breaking stress and strain of soybean-protein-isolate gels increased upon the addition of WG-treated okara. This effect increased as the number of WG treatments increased. These results suggest that NC technology can improve the physicochemical properties of okara and is useful in the development of protein gel-based foods.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2011
Author(s):  
Yangyang Chen ◽  
Min Zhang ◽  
Bhesh Bhandari

Due to the lack of a sufficient amount of animal protein and the pursuit of health and reduced environmental impact, the global demand for plant protein is increasing. This study endeavors to using textured soybean protein (TSP) or drawing soy protein (DSP) as raw materials to produce steak-like foods through 3D printing technology. The textural difference between fried 3D printed samples and fried commercial chicken breast (control) was studied. The results show that different ink substrates (TSP and DSP) and hydrocolloids (xanthan gum, konjac gum, sodium alginate, guar gum, sodium carboxymethyl cellulose, and hydroxyethyl cellulose) were the keys to successful printing. The ink composed of TSP and xanthan gum had the best printing characteristics and sample integrity after frying. It was found that different infilling patterns and infill rates had a significant effect on the texture properties of the fried samples. When the triangle infilling pattern was used at an infill rate of 60%, the product had had the closest hardness (2585.13 ± 262.55), chewiness (1227.18 ± 133.00), and gumminess (1548.09 ± 157.82) to the control sample. This work proved the feasibility of using 3D printing based on plant protein to produce steak-like food with texture properties similar to chicken breast.


Sign in / Sign up

Export Citation Format

Share Document