scholarly journals Flow Cytometric Detection of the Double-Positive (CD4+CD8+)/PD-1bright T-Cell Subset Is Useful in Diagnosing Nodular Lymphocyte-Predominant Hodgkin Lymphoma

Author(s):  
Zhongchuan Will Chen ◽  
Juanita Wizniak ◽  
Chuquan Shang ◽  
Raymond Lai

Context.— Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is characterized by neoplastic lymphocyte-predominant cells frequently rimmed by CD3+/CD57+/programmed death receptor-1 (PD-1)+ T cells. Because of the rarity of lymphocyte-predominant cells in most cases, flow cytometric studies on NLPHL often fail to show evidence of malignancy. Objective.— To evaluate the diagnostic utility of PD-1 in detecting NLPHL by flow cytometry, in conjunction with the CD4:CD8 ratio and the percentage of T cells doubly positive for CD4 and CD8. Design.— Flow cytometric data obtained from cases of NLPHL (n = 10), classical Hodgkin lymphoma (n = 20), B-cell non-Hodgkin lymphoma (n = 22), T-cell non-Hodgkin lymphoma (n = 5), benign lymphoid lesions (n = 20), angioimmunoblastic T-cell lymphomas (n = 6) and T-cell/histiocyte–rich large B-cell lymphomas (n = 2) were analyzed and compared. Results.— Compared with the other groups, NLPHL showed significantly higher values in the following parameters: CD4:CD8 ratio, percentage of T cells doubly positive for CD4 and CD8, percentage of PD-1–positive T cells, and median fluorescence intensity of PD-1 expression in the doubly positive for CD4 and CD8 subset. Using a scoring system (0–4) based on arbitrary cutoffs for these 4 parameters, all 10 NLPHL cases scored 3 or higher, as compared with only 3 cases from the other groups, producing an overall sensitivity of 100% and a specificity of 96% (72 of 75). Two of the 3 outliers were non-Hodgkin lymphoma, and both showed definitive immunophenotypic abnormalities leading to the correct diagnosis. The remaining outlier was a case of T-cell/histiocyte–rich large B-cell lymphoma. Conclusions.— The inclusion of anti–PD-1 in flow cytometry is useful for detecting NLPHL in fresh tissue samples, most of which would have otherwise been labeled as nondiagnostic or reactive lymphoid processes.

2020 ◽  
Vol 154 (Supplement_1) ◽  
pp. S107-S107
Author(s):  
E Ozluk ◽  
E Wei

Abstract Introduction/Objective Growth patterns of nodular lymphocyte predominant Hogdkin lymphoma (NLPHL) has been further described by Fan et all. Pattern E is T cell/histiocyte rich large B-cell lymphoma-like and is quite rare. The treatment usually may follow large B cell lymphoma protocol instead of Hodgkin lymphoma regimen. Methods Here we report a patient with NLPHL pattern E. Patient was a 25 years-old African American man who initially presented with generalized lymphadenopathy. Results Biopsy of the axillary lymph node revealed effaced lymph node architecture by a malignant neoplasm in a diffuse and vaguely nodular pattern. In the background of a diffuse infiltrate, there were small to medium sized lymphocytes, numerous atypical large cells with irregular, basophilic nucleoli, and variable cytoplasm. The large cells focally sheeted out. Many histiocytes were also seen in the background. The large atypical cells were positive for CD20, BOB-1, OCT2, BCL-2 (focally), BCL-6, PAX5, and MUM-1, and IgD, whereas negative for BCL-1, CD10, CD15, CD30. CD2, CD3, CD4, CD5, CD7, CD8 highlighted numerous T cells with mild cytological atypia, forming rosettes around the large atypical cells. T cells were negative for ALK-1, CD1a, TdT with increased Ki-67 proliferation index around 35%. Although the surrounding T cells appear atypical in morphology, flow cytometric analysis showed predominantly reactive T-cells with no loss of T-cell associated antigens. PCR analysis showed a producible peak in a single IgH reaction. However, the fragment size of the peak observed did not meet the criteria. T-cell gene rearrangement by TCR gamma and TCR beta PCR was negative for monoclonal T-cells. BCL-1, BCL-2, and BCL-6 FISH panel were negative for gene rearrangements. Based on these findings the diagnosis was made at stage IV. Patient started treatment with R-CHOP therapy with subsequent relapse. Patient has been placed on RICE chemotherapy with partial response. Conclusion NLPHL Pattern E type should be differentiated from classical Hodgkin lymphoma, diffuse large B-cell lymphoma and peripheral T cell lymphoma because the treatment greatly differs from those with higher stage and tendency for recurrence. It is the pathologist role to lead the clinician and render a correct histopathologic diagnosis.


Blood ◽  
2019 ◽  
Vol 134 (7) ◽  
pp. 626-635 ◽  
Author(s):  
Craig S. Sauter ◽  
Brigitte Senechal ◽  
Isabelle Rivière ◽  
Ai Ni ◽  
Yvette Bernal ◽  
...  

Abstract High-dose chemotherapy and autologous stem cell transplantation (HDT-ASCT) is the standard of care for relapsed or primary refractory (rel/ref) chemorefractory diffuse large B-cell lymphoma. Only 50% of patients are cured with this approach. We investigated safety and efficacy of CD19-specific chimeric antigen receptor (CAR) T cells administered following HDT-ASCT. Eligibility for this study includes poor-risk rel/ref aggressive B-cell non-Hodgkin lymphoma chemosensitive to salvage therapy with: (1) positron emission tomography–positive disease or (2) bone marrow involvement. Patients underwent standard HDT-ASCT followed by 19-28z CAR T cells on days +2 and +3. Of 15 subjects treated on study, dose-limiting toxicity was observed at both dose levels (5 × 106 and 1 × 107 19-28z CAR T per kilogram). Ten of 15 subjects experienced CAR T-cell–induced neurotoxicity and/or cytokine release syndrome (CRS), which were associated with greater CAR T-cell persistence (P = .05) but not peak CAR T-cell expansion. Serum interferon-γ elevation (P < .001) and possibly interleukin-10 (P = .07) were associated with toxicity. The 2-year progression-free survival (PFS) is 30% (95% confidence interval, 20% to 70%).  Subjects given decreased naive-like (CD45RA+CCR7+) CD4+ and CD8+ CAR T cells experienced superior PFS (P = .02 and .04, respectively). There was no association between CAR T-cell peak expansion, persistence, or cytokine changes and PFS. 19-28z CAR T cells following HDT-ASCT were associated with a high incidence of reversible neurotoxicity and CRS. Following HDT-ASCT, effector CD4+ and CD8+ immunophenotypes may improve disease control. This trial was registered at www.clinicaltrials.gov as #NCT01840566.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Liang Wang ◽  
Meng Xu ◽  
Chunyan Wang ◽  
Lihua Zhu ◽  
Junyan Hu ◽  
...  

Restricted T-cell receptor (TCR) Vα/Vβrepertoire expression and clonal expansion ofαβT cells especially for putative tumor-associated antigens were observed in patients with hematological malignancies. To further characterize theγδT-cell immune status in B-cell non-Hodgkin lymphoma (B-NHL), we investigated the distribution and clonality of TCR Vγ/Vδrepertoire in peripheral blood (PB), bone marrow (BM), and lymph node (LN) from patients with B-NHL. Four newly diagnosed B-NHL cases, including three with diffuse large B-cell lymphoma (DLBCL) and one with small lymphocytic lymphoma (SLL), were enrolled. The restrictive expression of TCR Vγ/Vδsubfamilies with different distribution patterns could be detected in PB, BM, or LN from all of four patients, and partial subfamily T cells showed clonal proliferation. At least one clonally expanded Vδsubfamily member was found in PB from each patient. However, the expression pattern and clonality of TCR Vγ/Vδchanged in different immune organs and showed individual feature in different patients. The clonally expanded Vδ5, Vδ6, and Vδ8 were detected only in PB but neither in BM nor LN while clonally expanded Vδ2 and Vδ3 could be detected in both PB and BM/LN. In conclusion, the results provide a preliminary profile of distribution and clonality of TCRγ/δsubfamilies T cells in PB, BM, and LN from B-NHL; similar clonally expanded Vδsubfamily T cells in PB and BM may be related to the same B-cell lymphoma-associated antigens, while the different reactive clonally expanded Vγ/VδT cells may be due to local immune response.


2011 ◽  
Vol 2 (1) ◽  
pp. 53-55
Author(s):  
Gururaj Patil Bheemanagouda ◽  
Kaveri Satish Hallikeri ◽  
Rekha Pillai Krishna

ABSTRACT Non-Hodgkin lymphomas are a group of highly diverse malignancies with great tendency to affect organs and tissues that do not ordinarily contain lymphoid cells. T-cell/histiocyte-rich large B-cell lymphoma (TCRBCL) is an uncommon histological variant of large B-cell non- Hodgkin lymphoma, morphologically characterized by a minor population of clonal B-cells distributed in a background of prominent reactive T lymphocytes. This is an interesting case of extranodal isolated TCRBCL in jaw bone and to our knowledge this is the first report of its kind in a nonimmune compromised 40-year-old female. An increase in the number of case reports of non-Hodgkin lymphoma in head and neck region definitely makes it to be included as differential diagnosis. The patient has completed 5 years of therapy with no evidence of recurrence.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Gary Kwok Cheong Lee ◽  
Dorothee Bienzle ◽  
Stefan Matthias Keller ◽  
Mei-Hua Hwang ◽  
Nikos Darzentas ◽  
...  

Abstract Background Lymphocytic neoplasms with frequent reactive lymphocytes are uncommonly reported in dogs, and can pose a diagnostic challenge. Different diagnostic modalities such as cytology, flow cytometry, histopathology, immunohistochemistry, and clonality testing, are sometimes required for a diagnosis. This report illustrates the value of using a multi-modal diagnostic approach to decipher a complex lymphocytic tumor, and introduces immune repertoire sequencing as a diagnostic adjunct. Case presentation A 10-month-old Great Dane was referred for marked ascites. Cytologic analysis of abdominal fluid and hepatic aspirates revealed a mixed lymphocyte population including numerous large lymphocytes, yielding a diagnosis of lymphoma. Flow cytometrically, abdominal fluid lymphocytes were highly positive for CD4, CD5, CD18, CD45, and MHC II, consistent with T cell lymphoma. Due to a rapidly deteriorating clinical condition, the dog was euthanized. Post mortem histologic evaluation showed effacement of the liver by aggregates of B cells surrounded by T cells, suggestive of hepatic T cell-rich large B cell lymphoma. Immune repertoire sequencing confirmed the presence of clonal B cells in the liver but not the abdominal fluid, whereas reactive T cells with shared, polyclonal immune repertoires were found in both locations. Conclusions T cell-rich large B cell lymphoma is a rare neoplasm in dogs that may be challenging to diagnose and classify due to mixed lymphocyte populations. In this case, the results of histopathology, immunohistochemistry and immune repertoire sequencing were most consistent with a hepatic B cell neoplasm and reactive T cells exfoliating into the abdominal fluid. Immune repertoire sequencing was helpful in delineating neoplastic from reactive lymphocytes and characterizing repertoire overlap in both compartments. The potential pitfalls of equating atypical cytomorphology and monotypic marker expression in neoplasia are highlighted.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1945-1945 ◽  
Author(s):  
Wenqun Zhang ◽  
Bo Hu ◽  
Ling Jing ◽  
Jing Yang ◽  
Shan Wang ◽  
...  

Background:Outcomes for pediatric patients with relapsed/refractory B-cell non-Hodgkin lymphoma (NHL) are poor despite use of high-intensity chemotherapy. CAR-T has shown efficacy in treating refractory/relapsed leukemia in pediatric patients and non-Hodgkin lymphoma in adult patients. Objectives:To assess the safety and efficacy of sequential CAR-T in the treatment of refractory/ relapsed B-NHL in pediatric patients. Design/Methods:In our ongoing clinical trial (ChiCTR1800014457), we enrolled and treated 17 pediatric patients with refractory/relapsed B-NHL. Following leukapheresis, T cells were activated with CD3 and CD28 antibodies for 24h, then transduced with lentivirus encoding anti-CD19-CD3zeta-4-1BB CAR and cultured for 5-6 days in serum-free media containing IL2, IL7, IL15, IL21. Meanwhile, all patients briefly received lympho-depleting chemotherapies consisting of fludarabine (30 mg/m2/day) and cyclophosphamide (250 mg/m2/day) on days −5, −4 and −3 according to tumor burden and patient state. On day 0, all patients received a single-dose infusion of CAR-T cells. CAR-T cell dose ranged from 0.5 to 3 million/kg. CAR-T cell numbers and cytokines were measured weekly. Tumor responses were evaluated at day 30 and day 60 post infusion and every two months thereafter. Adverse events were graded according to CTCAEv4 except cytokine release syndrome (CRS) was graded according to Lee et al. Results:Treated patients had relapsed/refractory Burkitt lymphoma (BL) (13/17), diffuse large B cell lymphoma (DLBCL) (2/17), B-lymphoblastic lymphoma (B-LBL) (2/17), and ranged from 4.5-18.0 years old. By St Jude's staging, 9 cases (46.7%) were in stage III, 8 cases (53.3%) were in stage IV. There were 3 cases with CNS involvement (17.6%) and 7 cases with bone marrow involvement (41.2%). They all failed at prior treatment including an average of 8.9 (6-15) courses of chemotherapy. They were then treated with sequential CAR-T cell therapy. A total of 26 courses of CAR-T cell infusion were administered. The overall complete response rate (CRR) was 41.7% (7/17) when first course of CAR-T therapy was conducted, which were all CD19 targeted. Among the 10 patients who did not achieve CR, 2 patients achieved PR with ongoing response, 1 patient died of severe CRS and progression at day 6 and another patient refused to continue the following therapy when tumor progressed at day 99, and he died 1 week later, the other 6 continued to receive second course of CAR-T therapy targeting CD20 or CD22, and 3 of them achieved CR. Thus the overall CRR increased to 58.8% (10/17). The 3 patients, who still did not achieve CR, continued to receive third course of CAR-T therapy targeting CD20 or CD22. Two of them finally achieved CR and the other failed to get CR and is now retreated with chemotherapy and oral Olaparib and Venclexta. Thus, with a median follow-up of 6.2 months (1-18 months), the overall response rate of sequential CAR-T therapy was 94.1% (16/17) and the overall CRR was 70.6% (12/17). Toxicity information through day 30 revealed the occurrence of mild CRS in 8 subjects (47.1%, grade I n=8, grade II n=0), severe CRS in 9 subjects (52.9%, grade III n=8, grade IV n=1). Neurotoxicity was observed in 7 cases (41.2%, seizure in 3 cases, tremor in 4 cases, headache in 1 cases). One case who died rapidly at day 6 of therapy suffered severe CRS (high fever, Capillary leak syndrome, severe pleural effusion, respiratory failure, shock, cardiopulmonary arrest) and neurotoxicity besides disease progression. Other patients with severe CRS and neurotoxicity recovered fully after glucocorticoid use and symptomatic treatment including anti-epilepsy, fluid, dehydrating agent. No case used tocilizumab. Response assessments were performed at day 15, 30, 45, 60. Updated enrollment, toxicity and response assessments will be presented. Conclusion: CD19/CD20/CD22-CAR-T therapy showed promising efficacy for pediatric patients with r/r B-NHL and the toxicities are tolerable with proper symptomatic and supportive treatment. Sequential CAR-T therapy can improve the efficacy compared with a single course of CAR-T infusion. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4187-4187 ◽  
Author(s):  
Zixun Yan ◽  
Wen Wang ◽  
Zhong Zheng ◽  
Ming Hao ◽  
Su Yang ◽  
...  

Abstract Introduction JWCAR029 is a novel CD19-directed 4-1BB stimulated chimeric antigen receptor T (CAR-T) cell type, which is different from JWCAR017 with independent production of CD4 and CD8 T cells and transfusion in non-fixed ratio. We conducted a single arm, open-label, dose escalation Phase I trial of JWCAR029 in relapsed and refractory B-cell non-Hodgkin lymphoma (NCT03355859). Methods From January to July 2018, 10 patients have been enrolled in this trial, including eight diffused large B cell lymphoma (DLBCL) and two MALT lymphoma, with median age of 47 years (range 32 to 59 years). All the patients received immunochemotherapy as induction and more than two lines of salvage treatment. Two patients received bridging chemotherapy after T-cell collection due to rapid tumor progression, followed by re-evaluation before CAR-T cell infusion. Lymphodepletion preconditioning was accomplished by fludarabine 25mg/m2/d and cyclophosphamide 250mg/m2/d on Day-4 to D-2, followed by CAR-T cell infusion on Day0. JWCAR029 was administrated as a single infusion in escalation dose levels, from 2.5×107 CAR-T cells (dose level 1, DL1) to 5.0×107 CAR-T cells (dose level 2, DL2) and to 1.0×108 CAR-T cells (dose level 3, DL3) according to mTPI-2 algorithm. Circulating blood count, serum biochemistry, and coagulation status were follow-up after infusion. Cytokines were assessed on a Luminex platform. Tumor evaluation was performed on Day 29 by PET-CT. PK data were detected by flow cytometry and real-time quantitative polymerase chain reaction system. All the adverse events were recorded. The study was approved by the Shanghai Rui Jin Hospital Review Board with informed consent obtained in accordance with the Declaration of Helsinki. Results The demographic characteristics of the patients were demonstrated in Table 1. Among six evaluable patients (3 of DL1 and 3 of DL2), the ORR was 100% on Day 29, including four complete remission and 2 partial remission. Cytokine release syndrome (CRS) was 100% in Gr 1, with main symptoms as fever (<39.0 degrees), fatigue, and muscle soreness. No neurotoxicity was observed. Four of the six patients with fever >38.0 degrees used prophylactic IL-6 Inhibitor (8mg/kg, ACTEMRA, two patients administered twice). No patients received steroids. The CRS showed no difference between dose level groups (p>0.99). Adverse effects included leukopenia (Gr 3-4: 83.3%, Gr 1-2: 16.7%), hypofibrinogenemia (Gr 1: 16.7%, Gr 2-4: 0%), liver dysfunction (Gr 1: 33.3%, Gr 2-4: 0%), elevated CRP (Gr 1: 83.3%, Gr 2-4: 0%), ferritin (Gr 1-2: 83.3%, Gr 2-4: 0%), or IL-6 (Gr 1-2:100%, Gr 3-4: 0%, Table 2). Conclusion Although long-term follow-up was needed, the preliminary data of six patients in this trial have demonstrated high response rates and safety of JWCAR029 in treating relapsed and refractory B-cell non-Hodgkin lymphoma. Disclosures Hao: JW Therapeutics: Employment, Equity Ownership.


Blood ◽  
1995 ◽  
Vol 86 (4) ◽  
pp. 1487-1492 ◽  
Author(s):  
B Hertenstein ◽  
B Wagner ◽  
D Bunjes ◽  
C Duncker ◽  
A Raghavachar ◽  
...  

CD52 is a phosphatidylinositolglycan (PIG)-anchored glycoprotein (PIG- AP) expressed on normal T and B lymphocytes, monocytes, and the majority of B-cell non-Hodgkin lymphomas. We observed the emergence of CD52- T cells in 3 patients after intravenous treatment with the humanized anti-CD52 monoclonal antibody Campath-1H for refractory B- cell lymphoma and could identify the underlaying mechanism. In addition to the absence of CD52, the PIG-AP CD48 and CD59 were not detectable on the CD52- T cells in 2 patients. PIG-AP-deficient T-cell clones from both patients were established. Analysis of the mRNA of the PIG-A gene showed an abnormal size in the T-cell clones from 1 of these patients, suggesting that a mutation in the PIG-A gene was the cause of the expression defect of PIG-AP. An escape from an immune attack directed against PIG-AP+ hematopoiesis has been hypothesized as the cause of the occurrence of PIG-AP-deficient cells in paroxysmal nocturnal hemoglobinuria (PNH) and aplastic anemia. Our results support the hypothesis that an attack against the PIG-AP CD52 might lead to the expansion of a PIG-anchor-deficient cell population with the phenotypic and molecular characteristics of PNH cells.


Sign in / Sign up

Export Citation Format

Share Document