scholarly journals Determination of levels of resistance in Pakistani bread wheat cultivars against stripe rust (Puccinia striiformis) under field conditions

2012 ◽  
Vol 7 (44) ◽  
pp. 5887-5897 ◽  
Author(s):  
Qamar Maqsood ◽  
Dilnawaz Ahmad Syed ◽  
Asif M
2019 ◽  
Vol 56 (4) ◽  
pp. 698
Author(s):  
Harpreet Singh ◽  
Jaspal Kaur ◽  
Ritu Bala ◽  
Sandeep Singh ◽  
P P S Pannu

Euphytica ◽  
2020 ◽  
Vol 216 (2) ◽  
Author(s):  
Zeray Siyoum Gebreslasie ◽  
Shuo Huang ◽  
Gangming Zhan ◽  
Ayele Badebo ◽  
Qingdong Zeng ◽  
...  

AbstractStripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is one the most important diseases of wheat in Ethiopia and worldwide. To identify resistance genes, 90 bread wheat lines and 10 cultivars were tested at the seedling stage against one Pst race from Ethiopia and six races from China as well as evaluated for the stripe rust response in an inoculated field nursery at Yangling, Shaanxi province and in a naturally infected field in Jiangyou, Sichuan, China. Resistance genes were postulated using molecular assays for Yr9, Yr17, Yr18, Yr26, Yr29, Yr36, Yr44 and Yr62. Of the 100 entries tested, 16 had all stage resistance to all races. Molecular markers were positive for Yr9 in five genotypes, Yr17 in 21 genotypes, Yr18 in 27 genotypes, Yr26 in ten genotypes, Yr29 in 22 genotypes, Yr36 in 12 genotypes, Yr44 in 30 genotypes, and Yr62 in 51 genotypes. No line had Yr5, Yr8, Yr10 or Yr15. Complete or all stage resistance was observed in genotypes carrying gene combinations Yr9 + Yr18 + Yr44 + Yr62, Yr29 + Yr62 + Yr26 and Yr9 + Yr17 + Yr26 + Yr44 + Yr62. The results are helpful for developing wheat cultivars with effective and more durable resistance to stripe rust both in China and Ethiopia.


2015 ◽  
Vol 7 (1) ◽  
pp. 170-174
Author(s):  
Rakesh Devlash ◽  
Naval Kishore ◽  
Guru Dev Singh

Under field conditions, various fungicide molecules were validated for their effectiveness on barley (Hordeum vulgare L.) stripe rust Puccinia striiformis f. sp. consecutively for three years under artificial field epiphytotic conditions. Seven fungicides viz., propiconazole 25%EC (tilt @ 0.1%), tebuconazole 25.9% m/m EC (folicur @ 0.1%), triademefon 25%WP (bayleton @ 0.1%), propiconazole 25%EC (tilt @ 0.05%), tebuconazole 25.9% m/m EC (folicur @ 0.05%), triademefon 25%WP (bayleton@ 0.05%), and mancozeb 75%WP (dithane M45 @ 0.2%) with variousconcentrations were tested for their effectiveness in controlling barley stripe rust severity. All fungicide applications resulted in lower disease severity and higher grain yields than untreated check plots. All the fungicides @ 0.1% concentrations reduced disease severity ranging from 87.8% to 95.6% except Mancozeb @ 0.2% (34.4%). Significant higher yield was obtained with Propiconazole @ 0.1% (26.7 q/ha) followed by Tebuconazole @ 0.1% (25.2 q/ha) and Triademefon @ 0.1% (24.5 q/ha). The present study revealed propiconazole as the most effective fungicide for the control of stripe rust of barley under epiphytotic conditions.


2005 ◽  
Vol 4 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Imtiaz Muhammad . ◽  
Cromey Matthew . ◽  
Ahmad Maqbool . ◽  
Hampton John . ◽  
McNeil David .

Plant Disease ◽  
2017 ◽  
Vol 101 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Anmin Wan ◽  
Kebede T. Muleta ◽  
Habtemariam Zegeye ◽  
Bekele Hundie ◽  
Michael O. Pumphrey ◽  
...  

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat in Ethiopia. In total, 97 isolates were recovered from stripe rust samples collected in Ethiopia in 2013 and 2014. These isolates were tested on a set of 18 Yr single-gene differentials for characterization of races and 7 supplementary differentials for additional information of virulence. Of 18 P. striiformis f. sp. tritici races identified, the 5 most predominant races were PSTv-105 (21.7%), PSTv-106 (17.5%), PSTv-107 (11.3%), PSTv-76 (10.3%), and PSTv-41 (6.2%). High frequencies (>40%) were detected for virulence to resistance genes Yr1, Yr2, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, Yr27, Yr28, Yr31, Yr43, Yr44, YrExp2, and YrA. Low frequencies (<40%) were detected for virulence to Yr10, Yr24, Yr32, YrTr1, Hybrid 46, and Vilmorin 23. None of the isolates were virulent to Yr5, Yr15, YrSP, and YrTye. Among the six collection regions, Arsi Robe and Tiyo had the highest virulence diversities, followed by Bekoji, while Bale and Holeta had the lowest. Evaluation of 178 Ethiopian wheat cultivars and landraces with two of the Ethiopian races and three races from the United States indicated that the Ethiopian races were more virulent on the germplasm than the predominant races of the United States. Thirteen wheat cultivars or landraces that were resistant or moderately resistant to all five tested races should be useful for breeding wheat cultivars with resistance to stripe rust in both countries.


1994 ◽  
Vol 45 (7) ◽  
pp. 1379 ◽  
Author(s):  
GJ Ash ◽  
RG Rees

Temperature sensitive resistance to stripe rust in selected Australian wheat cultivars was found to be most strongly expressed at a constant post-inoculation temperature of l9�C and at high light intensities. At 25�C the infection type on the susceptible host was reduced, indicating incompatability, while at the lower temperature of 13�C all cultivars were susceptible to the rust. At low light intensities there was a movement towards low infection types in cultivars possessing this resistance even at low temperatures. This made it essential to use high light intensities to differentiate this resistance to stripe rust. The host-pathogen interaction leading to the low infection types became irreversible after 6 to 7 days' exposure to the higher temperatures. As well as affecting disease progress towards the end of the growing season in the warmer areas of the wheat belt, this resistance could have a marked effect on the ability of Puccinia striiformis fsp. tritici to oversummer in the Australian wheat growing areas.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1206-1212
Author(s):  
Bingyao Chu ◽  
Lujia Yang ◽  
Cuicui Wang ◽  
Yilin Gu ◽  
Kai Yuan ◽  
...  

Wheat stripe rust caused by Puccinia striiformis f. sp. tritici is one of the most destructive diseases of wheat worldwide. Sichuan Province plays an important role in interregional epidemics in China. Application of host resistance is important in disease management, and efficient approaches to evaluate resistance level are necessary to obtain useful varieties. In this study, 100 wheat cultivars (lines) growing in Sichuan were selected to evaluate their resistance to stripe rust. Field experiments were conducted with a mixture of three P. striiformis f. sp. tritici races for inoculations at seeding and adult stages in the 2014 to 2015 season and the 2016 to 2017 season. Leaf samplings were conducted four times during the latent period at early growth stage of wheat. The sampled leaves were processed to extract DNA. The DNA of both wheat and P. striiformis f. sp. tritici was quantified using real-time quantitative polymerase chain reaction, and the molecular disease index (MDI) was used to evaluate the resistance level. The area under the disease progress curve in terms of disease index (AUDPC-DI) was obtained for each studied cultivar (line) in the fields. Among the 100 studied cultivars (lines), 61% of them showed seedling resistance, and 63 and 65% showed adult resistance in the 2014 to 2015 and 2016 to 2017 seasons, respectively, based on the infection type. High consistency in resistance grouping by cluster analysis as the percentage of the studied cultivar (line) belonging to the same group based on AUDPC-DI data and based on MDI data was obtained. The correlations between AUDPC-DI and MDI from samples collected on 9 and 14 or 15 days after inoculation during the latent period were all significant at P < 0.01. This study provided a new and efficient method for evaluation of varietal resistance to wheat stripe rust.


2008 ◽  
Vol 98 (7) ◽  
pp. 803-809 ◽  
Author(s):  
Q. Guo ◽  
Z. J. Zhang ◽  
Y. B. Xu ◽  
G. H. Li ◽  
J. Feng ◽  
...  

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most damaging diseases of wheat (Triticum aestivum) globally. High-temperature adult-plant resistance (HTAPR) and slow-rusting have great potential for sustainable management of the disease. The wheat cultivars Luke and Aquileja have been previously reported to possess HTAPR and slow-rusting to stripe rust, respectively. Aquileja displayed less number of stripes per unit leaf area than Luke, while Luke showed lower infection type than Aquileja at adult-plant stages of growth under high-temperature conditions. The objectives of this study were to confirm the resistances and to map the resistance genes in Luke and Aquileja. Luke was crossed with Aquileja, and 326 of the F2 plants were genotyped using 282 microsatellite primer pairs. These F2 plants and their derived F3 families were evaluated for resistance to stripe rust by inoculation in the fields and greenhouses of high- and low-temperatures. Infection type was recorded for both seedlings and adult plants, and stripe number was recorded for adult plants only. Two quantitative trait loci (QTL) were identified, on the short arm of chromosome 2B, to be significantly associated with infection type at adult-plant stages in the fields and in the high-temperature greenhouse. The locus distal to centromere, referred to as QYrlu.cau-2BS1, and the locus proximal to centromere, referred to as QYrlu.cau-2BS2, were separated by a genetic distance of about 23 cM. QYrlu.cau-2BS1 was flanked by the microsatellite markers Xwmc154 and Xgwm148, and QYrlu.cau-2BS2 was flanked by Xgwm148 and Xabrc167. QYrlu.cau-2BS1 and QYrlu.cau-2BS2 explained up to 36.6 and 41.5% of the phenotypic variation of infection type, respectively, and up to 78.1% collectively. No significant interaction between the two loci was detected. Another QTL, referred to as QYraq.cau-2BL, was detected on the long arm of chromosome 2B to be significantly associated with stripe number. QYraq.cau-2BL was flanked by the microsatellite markers Xwmc175 and Xwmc332, and it explained up to 61.5% of the phenotypic variation of stripe number. It is possible that these three QTL are previously unmapped loci for resistance to stripe rust.


Plant Disease ◽  
2018 ◽  
Vol 102 (3) ◽  
pp. 483-487 ◽  
Author(s):  
Bing Bing Bai ◽  
Tai Guo Liu ◽  
Bo Liu ◽  
Li Gao ◽  
Wan Quan Chen

In total, 13 commercial wheat cultivars around China and four races of Puccinia striiformis f. sp. tritici (namely, CYR32, CYR33, G22-9, and G22-14) were employed for a test of relative parasitic fitness (RPF) using the drop method. The RPF values were measured, including the urediniospore germination rate, the latent period, the uredinial length, the uredinial density, the infection area, the sporulation intensity, the lesion expansion speed, and the sporulation period. The results indicated that the parameters of relative parasitic fitness of the four P. striiformis f. sp. tritici races on the 13 wheat cultivars were significantly different (P = 0.00) in sporulation intensity, lesion expansion speed, uredinial length, sporulation period, uredinial density, and latent period. The urediniospore germination rates of the four P. striiformis f. sp. tritici races for the test were significantly different (P = 0.00), whereas no correlation with the different cultivars was observed (P = 1.00). The infection areas of the tested races on the different cultivars were significantly different (P = 0.00) but there were no obvious manifestations among the various races (P = 0.20). Principal component analysis (PCA) showed that the sporulation intensity represented sporulation capacity and scalability, the latent period indicated infection ability, and the urediniospore germination rate represented urediniospore vigor, all of which fully contributed to the RPF in the interaction of the four races and 13 wheat cultivars, which was calculated by the following formula: RPF = (sporulation intensity × urediniospore germination rate)/latent period. The sporulation and infection of G22-9 on the 13 large-scale cultivated cultivars were the highest, and the RPF of G22-9 was higher than that of the predominant races, CYR32 and CYR33. This result suggested that G22-9 could become a new predominant race and potentially cause epidemics of wheat stripe rust in China. To prevent potential epidemics, susceptible wheat cultivars should be withdrawn from production and breeding programs should reduce the use of Yr10 and Yr26 and use other more effective resistance genes in combination with nonrace-specific resistance for developing wheat cultivars with durable resistance to stripe rust.


Sign in / Sign up

Export Citation Format

Share Document