Resistance evaluation of differentials and commercial wheat cultivars to stripe rust (Puccinia striiformis) infection in hot spot regions of Canada

2018 ◽  
Vol 152 (2) ◽  
pp. 493-502 ◽  
Author(s):  
Gurcharn Singh Brar ◽  
Raman Dhariwal ◽  
Harpinder Singh Randhawa
Plant Disease ◽  
2017 ◽  
Vol 101 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Anmin Wan ◽  
Kebede T. Muleta ◽  
Habtemariam Zegeye ◽  
Bekele Hundie ◽  
Michael O. Pumphrey ◽  
...  

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat in Ethiopia. In total, 97 isolates were recovered from stripe rust samples collected in Ethiopia in 2013 and 2014. These isolates were tested on a set of 18 Yr single-gene differentials for characterization of races and 7 supplementary differentials for additional information of virulence. Of 18 P. striiformis f. sp. tritici races identified, the 5 most predominant races were PSTv-105 (21.7%), PSTv-106 (17.5%), PSTv-107 (11.3%), PSTv-76 (10.3%), and PSTv-41 (6.2%). High frequencies (>40%) were detected for virulence to resistance genes Yr1, Yr2, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, Yr27, Yr28, Yr31, Yr43, Yr44, YrExp2, and YrA. Low frequencies (<40%) were detected for virulence to Yr10, Yr24, Yr32, YrTr1, Hybrid 46, and Vilmorin 23. None of the isolates were virulent to Yr5, Yr15, YrSP, and YrTye. Among the six collection regions, Arsi Robe and Tiyo had the highest virulence diversities, followed by Bekoji, while Bale and Holeta had the lowest. Evaluation of 178 Ethiopian wheat cultivars and landraces with two of the Ethiopian races and three races from the United States indicated that the Ethiopian races were more virulent on the germplasm than the predominant races of the United States. Thirteen wheat cultivars or landraces that were resistant or moderately resistant to all five tested races should be useful for breeding wheat cultivars with resistance to stripe rust in both countries.


1994 ◽  
Vol 45 (7) ◽  
pp. 1379 ◽  
Author(s):  
GJ Ash ◽  
RG Rees

Temperature sensitive resistance to stripe rust in selected Australian wheat cultivars was found to be most strongly expressed at a constant post-inoculation temperature of l9�C and at high light intensities. At 25�C the infection type on the susceptible host was reduced, indicating incompatability, while at the lower temperature of 13�C all cultivars were susceptible to the rust. At low light intensities there was a movement towards low infection types in cultivars possessing this resistance even at low temperatures. This made it essential to use high light intensities to differentiate this resistance to stripe rust. The host-pathogen interaction leading to the low infection types became irreversible after 6 to 7 days' exposure to the higher temperatures. As well as affecting disease progress towards the end of the growing season in the warmer areas of the wheat belt, this resistance could have a marked effect on the ability of Puccinia striiformis fsp. tritici to oversummer in the Australian wheat growing areas.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1206-1212
Author(s):  
Bingyao Chu ◽  
Lujia Yang ◽  
Cuicui Wang ◽  
Yilin Gu ◽  
Kai Yuan ◽  
...  

Wheat stripe rust caused by Puccinia striiformis f. sp. tritici is one of the most destructive diseases of wheat worldwide. Sichuan Province plays an important role in interregional epidemics in China. Application of host resistance is important in disease management, and efficient approaches to evaluate resistance level are necessary to obtain useful varieties. In this study, 100 wheat cultivars (lines) growing in Sichuan were selected to evaluate their resistance to stripe rust. Field experiments were conducted with a mixture of three P. striiformis f. sp. tritici races for inoculations at seeding and adult stages in the 2014 to 2015 season and the 2016 to 2017 season. Leaf samplings were conducted four times during the latent period at early growth stage of wheat. The sampled leaves were processed to extract DNA. The DNA of both wheat and P. striiformis f. sp. tritici was quantified using real-time quantitative polymerase chain reaction, and the molecular disease index (MDI) was used to evaluate the resistance level. The area under the disease progress curve in terms of disease index (AUDPC-DI) was obtained for each studied cultivar (line) in the fields. Among the 100 studied cultivars (lines), 61% of them showed seedling resistance, and 63 and 65% showed adult resistance in the 2014 to 2015 and 2016 to 2017 seasons, respectively, based on the infection type. High consistency in resistance grouping by cluster analysis as the percentage of the studied cultivar (line) belonging to the same group based on AUDPC-DI data and based on MDI data was obtained. The correlations between AUDPC-DI and MDI from samples collected on 9 and 14 or 15 days after inoculation during the latent period were all significant at P < 0.01. This study provided a new and efficient method for evaluation of varietal resistance to wheat stripe rust.


2008 ◽  
Vol 98 (7) ◽  
pp. 803-809 ◽  
Author(s):  
Q. Guo ◽  
Z. J. Zhang ◽  
Y. B. Xu ◽  
G. H. Li ◽  
J. Feng ◽  
...  

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most damaging diseases of wheat (Triticum aestivum) globally. High-temperature adult-plant resistance (HTAPR) and slow-rusting have great potential for sustainable management of the disease. The wheat cultivars Luke and Aquileja have been previously reported to possess HTAPR and slow-rusting to stripe rust, respectively. Aquileja displayed less number of stripes per unit leaf area than Luke, while Luke showed lower infection type than Aquileja at adult-plant stages of growth under high-temperature conditions. The objectives of this study were to confirm the resistances and to map the resistance genes in Luke and Aquileja. Luke was crossed with Aquileja, and 326 of the F2 plants were genotyped using 282 microsatellite primer pairs. These F2 plants and their derived F3 families were evaluated for resistance to stripe rust by inoculation in the fields and greenhouses of high- and low-temperatures. Infection type was recorded for both seedlings and adult plants, and stripe number was recorded for adult plants only. Two quantitative trait loci (QTL) were identified, on the short arm of chromosome 2B, to be significantly associated with infection type at adult-plant stages in the fields and in the high-temperature greenhouse. The locus distal to centromere, referred to as QYrlu.cau-2BS1, and the locus proximal to centromere, referred to as QYrlu.cau-2BS2, were separated by a genetic distance of about 23 cM. QYrlu.cau-2BS1 was flanked by the microsatellite markers Xwmc154 and Xgwm148, and QYrlu.cau-2BS2 was flanked by Xgwm148 and Xabrc167. QYrlu.cau-2BS1 and QYrlu.cau-2BS2 explained up to 36.6 and 41.5% of the phenotypic variation of infection type, respectively, and up to 78.1% collectively. No significant interaction between the two loci was detected. Another QTL, referred to as QYraq.cau-2BL, was detected on the long arm of chromosome 2B to be significantly associated with stripe number. QYraq.cau-2BL was flanked by the microsatellite markers Xwmc175 and Xwmc332, and it explained up to 61.5% of the phenotypic variation of stripe number. It is possible that these three QTL are previously unmapped loci for resistance to stripe rust.


Plant Disease ◽  
2018 ◽  
Vol 102 (3) ◽  
pp. 483-487 ◽  
Author(s):  
Bing Bing Bai ◽  
Tai Guo Liu ◽  
Bo Liu ◽  
Li Gao ◽  
Wan Quan Chen

In total, 13 commercial wheat cultivars around China and four races of Puccinia striiformis f. sp. tritici (namely, CYR32, CYR33, G22-9, and G22-14) were employed for a test of relative parasitic fitness (RPF) using the drop method. The RPF values were measured, including the urediniospore germination rate, the latent period, the uredinial length, the uredinial density, the infection area, the sporulation intensity, the lesion expansion speed, and the sporulation period. The results indicated that the parameters of relative parasitic fitness of the four P. striiformis f. sp. tritici races on the 13 wheat cultivars were significantly different (P = 0.00) in sporulation intensity, lesion expansion speed, uredinial length, sporulation period, uredinial density, and latent period. The urediniospore germination rates of the four P. striiformis f. sp. tritici races for the test were significantly different (P = 0.00), whereas no correlation with the different cultivars was observed (P = 1.00). The infection areas of the tested races on the different cultivars were significantly different (P = 0.00) but there were no obvious manifestations among the various races (P = 0.20). Principal component analysis (PCA) showed that the sporulation intensity represented sporulation capacity and scalability, the latent period indicated infection ability, and the urediniospore germination rate represented urediniospore vigor, all of which fully contributed to the RPF in the interaction of the four races and 13 wheat cultivars, which was calculated by the following formula: RPF = (sporulation intensity × urediniospore germination rate)/latent period. The sporulation and infection of G22-9 on the 13 large-scale cultivated cultivars were the highest, and the RPF of G22-9 was higher than that of the predominant races, CYR32 and CYR33. This result suggested that G22-9 could become a new predominant race and potentially cause epidemics of wheat stripe rust in China. To prevent potential epidemics, susceptible wheat cultivars should be withdrawn from production and breeding programs should reduce the use of Yr10 and Yr26 and use other more effective resistance genes in combination with nonrace-specific resistance for developing wheat cultivars with durable resistance to stripe rust.


1967 ◽  
Vol 45 (3) ◽  
pp. 291-307 ◽  
Author(s):  
H. Tollenaar ◽  
Byron R. Houston

Stripe rust of wheat, Puccinia striiformis f. sp. tritici, was found to oversummer in the Sierra Nevada at altitudes of 6000 ft or above on wild grasses belonging to Elymus spp., Hordeum spp., and Sitanion spp. The similarity of infection types of stripe rust isolates from various locations and hosts on a differential set of wheat cultivars suggests that only one race of P. striiformis f. sp. tritici occurs in California.Stripe rust on Poa spp. should be considered as P. striiformis f. sp. poae f. sp. nov. because of its entirely different host range and temperature requirements.A mean temperature of 22.3 °C or mean maximum temperature of 32.4 °C measured over a 10-day period is lethal to P. striiformis f. sp. tritici, thus accounting for the absence of this fungus during the summer in all regions of California but the Sierra Nevada and the coastal area. In late autumn, recurrence of the rust in the wheat-growing areas is initiated when east winds carry uredospores from the Sierra Nevada into the central part of the Sacramento – San Joaquin Valley, infecting volunteer wheat plants and early sown wheat. In late winter, a shortening of the latent period because of rising daily temperatures results in a rapid development of stripe rust at these infection sites and consequently in secondary spread of the rust to previously uninfected areas.


Genome ◽  
2001 ◽  
Vol 44 (4) ◽  
pp. 509-516 ◽  
Author(s):  
Z X Shi ◽  
X M Chen ◽  
R F Line ◽  
H Leung ◽  
C R Wellings

The Yr9 gene, which confers resistance to stripe rust caused by Puccinia striiformis f.sp. tritici (P. s. tritici) and originated from rye, is present in many wheat cultivars. To develop molecular markers for Yr9, a Yr9 near-isogenic line, near-isogenic lines with nine other Yr genes, and the recurrent wheat parent 'Avocet Susceptible' were evaluated for resistance in the seedling stage to North American P. s. tritici races under controlled temperature in the greenhouse. The resistance gene analog polymorphism (RGAP) technique was used to identify molecular markers for Yr9. The BC7:F2 and BC7:F3 progeny, which were developed by backcrossing the Yr9 donor wheat cultivar Clement with 'Avocet Susceptible', were evaluated for resistance to stripe rust races. Genomic DNA was extracted from 203 BC7:F2 plants and used for cosegregation analysis. Of 16 RGAP markers confirmed by cosegregation analysis, 4 were coincident with Yr9 and 12 were closely linked to Yr9 with a genetic distance ranging from 1 to 18 cM. Analyses of nulli-tetrasomic 'Chinese Spring' lines with the codominant RGAP marker Xwgp13 confirmed that the markers and Yr9 were located on chromosome 1B. Six wheat cultivars reported to have 1B/1R wheat-rye translocations and, presumably, Yr9, and two rye cultivars were inoculated with four races of P. s. tritici and tested with 9 of the 16 RGAP markers. Results of these tests indicate that 'Clement', 'Aurora', 'Lovrin 10', 'Lovrin 13', and 'Riebesel 47/51' have Yr9 and that 'Weique' does not have Yr9. The genetic information and molecular markers obtained from this study should be useful in cloning Yr9, in identifying germplasm that may have Yr9, and in using marker-assisted selection for combining Yr9 with other stripe rust resistance genes.Key words: molecular markers, Puccinia striiformis f.sp. tritici, resistance gene analog polymorphism, Triticum aestivum.


2010 ◽  
Vol 63 ◽  
pp. 145-150 ◽  
Author(s):  
S.L.H. Viljanen-Rollinson ◽  
M.V. Marroni ◽  
R.C. Butler

Two field trials autumn and springsown with seven fungicide treatments and three wheat cultivars with different levels of resistance to Puccinia striiformis the cause of stripe rust were carried out at Lincoln during the 20092010 growing season to assess the value of utilising disease resistance within an integrated wheat disease management strategy The development of stripe rust was monitored during the season The resistant cultivar CFR02452 was free of stripe rust in all treatments including the no fungicide treatment There was more disease in the autumnsown trial than in the springsown trial The moderately resistant cultivar Torlesse had less stripe rust than the susceptible cultivar Claire in both trials and negligible disease in the springsown trial In cultivar Claire for both trials two fungicide applications that started before disease was present provided disease control that was similar to four applications but fungicide applications that commenced once the disease had established provided little control of stripe rust


Sign in / Sign up

Export Citation Format

Share Document