Microbial diversity in a full-scale anaerobic reactor treating high concentration organic cassava wastewater

2012 ◽  
Vol 11 (24) ◽  
Author(s):  
Ruifang Gao
1994 ◽  
Vol 29 (7) ◽  
pp. 153-156 ◽  
Author(s):  
D. Wedi ◽  
P. A. Wilderer

Most of the fundamental processes responsible for enhanced biological phosphorus removal (EBPR) were obtained through laboratory tests under defined conditions with pure or enriched cultures. Acinetobacter sp. was identified as the most important group of bacteria responsible for bio-P removal. Full scale data showed, however, that laboratory results do not match full scale results well enough. There is a lack of data on the effects of sub-optimal process conditions such as inadequate availability of volatile fatty acids (VFA), high nitrate recycle, storm water inflow or low temperatures. In this paper the results of full scale experiments on P-release are presented and compared with theoretical values. Measurements at a full scale Phoredox-system showed a surprisingly low P-release in the anaerobic reactor. Only 4 to 10% of the phosphorus in the activated sludge was released in the bulk liquid. With laboratory batch-tests, a maximum of 20% of the P in the sludge could be released. It is assumed that under the prevailing process conditions either the fraction of Acinetobacter sp. was very small, or bacteria other than Acinetobacter sp. were responsible for the P-removal, or most of the phosphorus was bound chemically but mediated by biological processes.


RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25484-25496
Author(s):  
Wei Zhou ◽  
Weiying Li ◽  
Jiping Chen ◽  
Yu Zhou ◽  
Zhongqing Wei ◽  
...  

Drinking water microbial diversity influence in full-scale water supply systems.


2006 ◽  
Vol 53 (11) ◽  
pp. 251-260 ◽  
Author(s):  
H. Tsuno ◽  
M. Kawamura ◽  
T. Oya

An expanded-bed anaerobic reactor with granular activated carbon (GAC) medium has been developed to treat wastewaters that contain a high concentration of inhibitory and/or refractory organic compounds as well as readily degradable organic compounds. The process is characterised by a combination of two removal mechanisms; adsorption on GAC and biological degradation by microorganisms grown on GAC. Applicability of the reactor to treatment of phenol, chloroacetaldehyde (CAA), pentachlorophenol (PCP) and tetrachloroethylene (PCE) was discussed based on experimental data. All chemicals focused on here were removed well and stably at a removal efficiency of more than 98% even during starting operation and shock load operation. Chemicals in influent that exceeded biological degradation capacity was initially adsorbed on GAC and then gradually degraded, and hence the adsorptive capacity of GAC was regenerated biologically. These results proved that a biological activated carbon anaerobic reactor was effective for treatment of wastewater containing hazardous chemicals, especially for strongly absorbable chemicals, as well as readily degradable organic compounds at high concentration.


2019 ◽  
Vol 42 (12) ◽  
pp. 2035-2046 ◽  
Author(s):  
Cecilia Callejas ◽  
Alfonsina Fernández ◽  
Mauricio Passeggi ◽  
Jorge Wenzel ◽  
Patricia Bovio ◽  
...  

2004 ◽  
Vol 49 (5-6) ◽  
pp. 315-323 ◽  
Author(s):  
K.M. Poo ◽  
B.H. Jun ◽  
S.H. Lee ◽  
J.H. Im ◽  
H.J. Woo ◽  
...  

Treatment of swine wastewater containing strong nitrogen was attempted in a full-scale SBR. The strongest swine wastewater was discharged from a slurry-type barn and called swine-slurry wastewater (SSW). Slightly weaker wastewater was produced from a scraper-type barn and called swine-urine wastewater (SUW). TCOD, NH4+-N and TSS in raw SSW were 23,000-72,000 mg/L, 3,500-6,000 mg/L and 17,000-50,000 mg/L, respectively. A whole cycle of SBR consists of 4 sub-cycles with anoxic period of 1 hr and aerobic period of 3 hr. The maximum loading rates of both digested-SSW and SUW were similar to 0.22 kg NH4+-N/m3/day whereas the maximum loading rates of raw SSW was up to 0.35 TN/m3/day on keeping the effluent quality of 60 TN mg/l. The VFAs portion of SCOD in raw SSW was about more than 60%. The VFAs in SUW and digested-SSW were about 22% and 15%, respectively. NH4+-N and PO43--P in SSW were removed efficiently compared to those in digested-SSW and DUW because SSW had high a C/N ratio and readily biodegradable organic. High concentration of organic was useful to enhance denitrification and P uptake. Also the amount of external carbon for denitrification was reduced to 5% and 10% of those for digested-SSW and SUW.


2004 ◽  
Vol 49 (11-12) ◽  
pp. 319-325 ◽  
Author(s):  
N.M. Mendonça ◽  
C.L. Niciura ◽  
E.P. Gianotti ◽  
J.R. Campos

This paper describes the performance, sludge production and biofilm characteristics of a full scale fluidized bed anaerobic reactor (32 m3) for domestic wastewater treatment. The reactor was operated with 10.5 m.h-1 upflow velocity, 3.2 h hydraulic retention time, and recirculation ratio of 0.85 and it presented removal efficiencies of 71 ± 8% of COD and 77 ± 14% of TSS. During the apparent steady-state period, specific sludge production and sludge age in the reactor were (0.116 ± 0.033) kgVSS. kgCOD-1 and (12 ± 5)d, respectively. Biofilm formed in the reactor presented two different patterns: one of them at the beginning of the colonization and the other of mature biofilm. These different colonization patterns are due to bed stratification in the reactor, caused by the difference in local-energy dissipation rates along the reactor's height, and density, shape, etc. of the bioparticles. The biofilm population is formed mainly of syntrophic consortia among sulfate reducing bacteria, methanogenic archaea such as Methanobacterium and Methanosaeta-like cells.


2013 ◽  
Vol 143 ◽  
pp. 512-518 ◽  
Author(s):  
Jiang-Tao Qiao ◽  
Yan-Ling Qiu ◽  
Xian-Zheng Yuan ◽  
Xiao-Shuang Shi ◽  
Xiao-Hui Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document