scholarly journals Effect of compost and earthworm production on soil properties, growth and dry matter yield of maize in crude oil degraded soil

2017 ◽  
Vol 8 (1) ◽  
pp. 1-10
Author(s):  
I. A. Nweke
Author(s):  
Stephen Okhumata Dania ◽  
Adebimpe Omowumi Ayegbe ◽  
Bright Ehijiele Amenkhienan

Compost is an important source of organic fertilizer that can be used to amend degraded soil to improve soil nutrient and crops yield. This experiment was to evaluate the effect of sawdust – piggery compost on soil properties, growth and yield of maize and it was carried out at the Ambrose Alli University Teaching and Research Farm, Emaudo, Ekpoma, Edo State. The experiment was fitted in a Randomized Complete Block Design (RCBD) with seven treatments and three replicates. The treatments were; control (0), 2, 4, 6, 8, 10 and 12 tonnes of sawdust – piggery compost per hectares (ha-1). Data collected were analysed using ANOVA and LSD was used to separate means. Soil nutrients were below critical levels and the application of compost improved fertility status of the soil. Growth parameters, dry matter yield, cob weight, grain yield and nutrient uptake were determined. It was observed that application of Sawdust – piggery compost significantly (p 0.05) increased the growth of maize compared to control. The application of 8 to 12 tonnes of sawdust – piggery compost significantly (p 0.05) increased the plant height, leaf area and stem girth of maize compared to other treatments. The application of 8 to 12 tonnes per hectares (ha-1) of sawdust – piggery compost significantly (p 0.05) increased the cob weight, grain and dry matter yield of maize compared to other treatments, however, the application of 10 t ha-1 of compost to maize increased grain yield of maize than others rate of applications with the yield value of 4.60 t ha-1. The uptake of nitrogen, phosphorus and potassium were higher with application of 12 tonnes of compost. In conclusion, the application rates of 10 t ha-1 of sawdust – piggery compost per hectare on nutrient depleted soils will improve the growth and yield of maize.


Soil Systems ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 7
Author(s):  
Margarida Arrobas ◽  
Surian Fernanda de Almeida ◽  
Soraia Raimundo ◽  
Lucas da Silva Domingues ◽  
Manuel Ângelo Rodrigues

The use of humic substances in agriculture has increased in recent years, and leonardite has been an important raw material in the manufacture of commercial products rich in humic and fulvic acids. Leonardite-based products have been used to improve soil properties and to help plants cope with abiotic and biotic stresses. In this study, the effects of two commercial leonardites and an organic compost, in addition to a control treatment, were assessed for pot-grown olive plants over a period of fourteen months on soil properties, tissue elemental composition and dry matter yield (DMY). Three organic amendments were applied at single and double rates of that set by the manufacturer. The study was arranged in two experiments: one containing the seven treatments mentioned above and the other containing the same treatments supplemented with mineral nitrogen (N), phosphorus (P) and potassium (K) fertilization. Overall, organic compost increased soil organic carbon by ~8% over the control. In the experiment without NPK supplementation, N concentrations in shoots and P in roots were the highest for the compost application (leaf N 12% and root P 32% higher than in the control), while in the experiment with NPK supplementation, no significant differences were observed between treatments. Total DMY was ~10% higher in the set of treatments with NPK in comparison to treatments without NPK. Leonardites did not affect significantly any measured variables in comparison to the control. In this study, a good management of the majority of environmental variables affecting plant growth may have reduced the possibility of obtaining a positive effect on plant nutritional status and growth from the use of commercial leonardites. The leonardites seemed to have caused a slight effect on biological N immobilization. This is not necessarily an advantage or a drawback; it is rather a feature that must be understood to help farmers make better use of these products.


2018 ◽  
Vol 13 (21) ◽  
pp. 1080-1090 ◽  
Author(s):  
Ngulube Munsanda ◽  
Mutiti Mweetwa Alice ◽  
Phiri Elijah ◽  
Christopher Muriu Njoroge Samuel ◽  
Chalwe Hendrix ◽  
...  

Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 194
Author(s):  
Sandra Afonso ◽  
Margarida Arrobas ◽  
Manuel Ângelo Rodrigues

In hops (Humulus lupulus L.), irrigation by flooding the inter-row can carry away suspended particles and minerals, causing gradients in soil fertility. The effect of more than 20 years of flooding irrigation on soil and plants was evaluated in two hop fields by measuring soil and plant variables in multiple points along the rows. In a second experiment 1000 kg ha−1 of lime was applied and incorporated into the soil to assess whether liming could moderate any gradient created by the irrigation. At different sampling points along the rows, significant differences were recorded in soil properties, plant elemental composition and dry matter yield, but this was not found to exist over a continuous gradient. The variations in cone yield were over 50% when different sampling points were compared. However, this difference cannot be attributed to the effect of irrigation, but rather to an erratic spatial variation in some of the soil constituents, such as sand, silt and clay. Flooding irrigation and frequent soil tillage resulted in lower porosity and higher soil bulk density in the 0.0–0.10 m soil layer in comparison to the 0.10–0.20 m layer. In turn, porosity and bulk density were respectively positively and negatively associated with crop productivity. Thus, irrigation and soil tillage may have damaged the soil condition but did not create any gradient along the row. The ridge appeared to provide an important pool of nutrients, probably caused by mass flow due to the evaporation from it and a regular supply of irrigation water to the inter-row. Liming raised the soil pH slightly, but had a relevant effect on neither soil nor plants, perhaps because of the small amounts of lime applied.


2009 ◽  
Vol 57 (2) ◽  
pp. 119-125
Author(s):  
G. Hadi

The dry matter and moisture contents of the aboveground vegetative organs and kernels of four maize hybrids were studied in Martonvásár at five harvest dates, with four replications per hybrid. The dry matter yield per hectare of the kernels and other plant organs were investigated in order to obtain data on the optimum date of harvest for the purposes of biogas and silage production.It was found that the dry mass of the aboveground vegetative organs, both individually and in total, did not increase after silking. During the last third of the ripening period, however, a significant reduction in the dry matter content was sometimes observed as a function of the length of the vegetation period. The data suggest that, with the exception of extreme weather conditions or an extremely long vegetation period, the maximum dry matter yield could be expected to range from 22–42%, depending on the vegetation period of the variety. The harvest date should be chosen to give a kernel moisture content of above 35% for biogas production and below 35% for silage production. In this phenophase most varieties mature when the stalks are still green, so it is unlikely that transport costs can be reduced by waiting for the vegetative mass to dry.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 481a-481 ◽  
Author(s):  
M. Rangappa ◽  
H.L. Bhardwaj

Sweet basil (Ocimum basilicum) is an important culinary herb in Virginia and other areas. The objective of this study, conducted during 1997, was to determine optimal N rate for fresh and dry matter yield. Seed of Broad Leaf sweet basil were direct-seeded on 18 June in rows 0.75 m apart in a RCBD design with 8 replications. Four N rates (0, 25, 50, and 75 kg N/ha) were used. Calcium nitrate (15.5% N) was used as the fertilizer source. All plants from 1-m row length from middle row of each plot were harvested by hand on 23 Sept. and fresh weights were recorded. The plant material was dried at 70°C for 48 h to record dry weights. The moisture content at harvest was calculated from fresh and dry weights. The fresh yields following 0, 25, 50, and 75 kg N/ha were 3.7, 5.4, 6.4, and 6.8 kg/m2, respectively. The yield difference between two highest N rates was not significant, however, both these rates had significantly higher yield than the two lowest rates. Similar results were also obtained for dry matter yields. The highest N rate of 75 kg N/ha resulted in significantly higher dry matter yield (1.3 kg/m2) as compared to the other three rates. The lowest dry matter yield was obtained after the control treatment (0.6 kg/m2). An opposite relationship between N rate and moisture content was observed when the highest moisture content resulted from control and 50 kg N/ha treatments. These results indicate that optimum N rate for sweet basil in Virginia is 50 to 75 kg/ha.


Sign in / Sign up

Export Citation Format

Share Document