scholarly journals Effect of different rates of sawdust - piggery compost on soil properties and yield of maize in nutrient depleted soil

Author(s):  
Stephen Okhumata Dania ◽  
Adebimpe Omowumi Ayegbe ◽  
Bright Ehijiele Amenkhienan

Compost is an important source of organic fertilizer that can be used to amend degraded soil to improve soil nutrient and crops yield. This experiment was to evaluate the effect of sawdust – piggery compost on soil properties, growth and yield of maize and it was carried out at the Ambrose Alli University Teaching and Research Farm, Emaudo, Ekpoma, Edo State. The experiment was fitted in a Randomized Complete Block Design (RCBD) with seven treatments and three replicates. The treatments were; control (0), 2, 4, 6, 8, 10 and 12 tonnes of sawdust – piggery compost per hectares (ha-1). Data collected were analysed using ANOVA and LSD was used to separate means. Soil nutrients were below critical levels and the application of compost improved fertility status of the soil. Growth parameters, dry matter yield, cob weight, grain yield and nutrient uptake were determined. It was observed that application of Sawdust – piggery compost significantly (p 0.05) increased the growth of maize compared to control. The application of 8 to 12 tonnes of sawdust – piggery compost significantly (p 0.05) increased the plant height, leaf area and stem girth of maize compared to other treatments. The application of 8 to 12 tonnes per hectares (ha-1) of sawdust – piggery compost significantly (p 0.05) increased the cob weight, grain and dry matter yield of maize compared to other treatments, however, the application of 10 t ha-1 of compost to maize increased grain yield of maize than others rate of applications with the yield value of 4.60 t ha-1. The uptake of nitrogen, phosphorus and potassium were higher with application of 12 tonnes of compost. In conclusion, the application rates of 10 t ha-1 of sawdust – piggery compost per hectare on nutrient depleted soils will improve the growth and yield of maize.

Author(s):  
Smart Augustine Ojobor ◽  
Collins N Egbuchua

The research was conducted to monitor the influent of abattoir wastewater compost on rice growth and yield in Benin-Owah River Basin in Illah, Delta State, Nigeria. The compost was applied at 0, 2.5, 5.0, 10 t/ha, and NPK15:15:15 at 250 kg/ha laid in randomized complete block design with four replicates. Rice seeds were sown for two years, and residual effects were evaluated in the third year. Rice plant height, stem circumference, and the number of tillers was measured at two weeks intervals while rice yields have taken at harvest. Soil samples were taken yearly to monitor nutrient changes. Data obtained were analyzed with analysis of variance and mean separated with Duncan Multiple Range Test at α0.05. In the first year, NPK15:15:15 significantly gave the highest dry matter (6.28±1.45 t/ha) and grain yield (2.4±0.53 t/ha). While in the second year, 10 t/ha treatment produced the dry matter (7.69±1.60 t/ha) and grain yield (2.6±0.53 t/ha). In a residual study, the highest grain yield (2.8±0.72 t/ha) was produced in the plot treated with 10 t/ha, and it also gave the highest pH, organic carbon, total nitrogen, and available P content. The compost at the rate of 10 t/ha can increase soil fertility and rice yield.


Author(s):  
K. Areghan ◽  
Sunday Ebonka Nwajei ◽  
Anthony Uhunomwan Omoregie

Studies were conducted to investigate the effect of continuous cropping and NPK fertilizer on the growth and yield of cowpea (Vigna unguiculata (L) Walp) grown on soils from different management systems. The investigations were carried out in two parts. The first dealt with the effect of continuous cropping while the other focused on the effect of NPK fertilizer on cowpea. Representative soil samples were obtained at 0-15 cm depth from land which had been continuously cropped, under forest tree fallow, and secondary bush fallow. These were bulked, processed, and analyzed. Six (6) kg of each type of soil were weighed into 25 x 22 cm polybag of 500 gauge. The continuous cropping experiment involved three cropping cycles of 35days each of cowpea on the same soils from 3 cropping systems. In the second experiment, a 2 x 3 factorial involving 2 levels of fertilizers (0, 40 kg NPK/ha) and 3 sources of soil were carried out to test their effects on cowpea. The growth parameters measured were plant height, number of leaves/plant and number of branches/plant. Number of nodules/plant, number of pods/plant, dry matter and grain yield were also estimated. Successive cropping of soils significantly reduced cowpea growth. Cowpea plants grown on soils from continuously cropped land had the least growth performance. Number of nodules/plant increased with successive cropping. Higher dry matter yield was obtained from the continuously cropped land. A significant (r = +0.55) positive correlation was found between soil P and dry matter yield of cowpea. NPK fertilization had only significant effect on plant height at 10 WAP but not on other growth parameters measured. The highest grain yield was obtained from unfertilized secondary bush fallow soil. Sources of soil (soil management system) had significant effect on some of the agronomic characters of cowpea.


2020 ◽  
Vol 4 (2) ◽  
pp. 46-50
Author(s):  
Pisa C ◽  
Parwada C ◽  
Chiripanyanga S ◽  
Dunjana N

Production of leaf vegetables requires intensive soil nutrients management. A 3-year field experiment was carried out to assess effects of vermiculite application rates on the growth and yield of Brassica napus. The experiment was conducted during the 2016/17, 2017/18 and 2018/19 summer seasons at the Marondera University of Agricultural Sciences and Technology (MUAST) farm, Mashonaland East Province, Zimbabwe. Vermiculite was applied at five levels of 0 (control), 1, 2, 5 and 10 t ha-1 in a completely randomised block design (RCBD) with 3 replicates. Basal and top-dressing fertilizers were applied using the recommended rates in the study area. The B. napus leaf width, leaf length, fresh and dry matter yield, leaf nutrient concentration and N and P uptake were measured. Analysis of variance (ANOVA) at p = 0.05 was done to compare the effects of vermiculite application rates on growth and yield of B. napus. Growth parameters and yield of B. napus significantly (P <0.05) differed among the five levels of vermiculite. Application rates of 5 t ha-1 and 10 t ha-1 improved leaf width and length, fresh and dry matter yield of B. napus. Farmers may therefore apply 5 -10 t ha-1 of vermiculite in order to increase rape leaf yields. However, there is need for further researches to determine the optimum application rates of vermiculite are essential.


2021 ◽  
Vol 52 (6) ◽  
pp. 1431-1440
Author(s):  
N. M. Abood ◽  
E. M. SHALAL ◽  
M. I. HAMDAN

Field experiment was carried out during the spring and fall seasons of 2019 at the Abu Ghraib Research Station of the Agricultural Research Office/ Ministry of Agriculture, was aimed to investigate the effect of plant growth inhibitors on growth and yield of several sorghum varieties .Randomized Complete Block Design within split plot arrangement with three replications was used. The main plot consists of three growth inhibitors (Cycocel, Ethiphon, and Mebiquat), which were added at stages six and eight leaf stage, in addition to the control treatment (distilled water only), the sub plot was included three cultivars (Mabrouk, Buhooth 70 and Giza 113). The results showed in both seasons significant interaction between cultivars and growth inhibitors in most of the studied traits. The plants of the variety Giza 113 sprayed with Ethiphon recorded the lowest period of reaching physiological maturity, the highest average dry matter yield, and the highest weight of 1000 grains (89.00 days, 17.32 ton ha-1, and 39.33 gm) respectively. The same variety recorded the highest content of chlorophyll in the leaves and the highest grain yield due to the effect of Mebiquat (49.50 spad, 3.93 ton ha-1. The cultivar Buhooth 70 with the effect of Cycocel achieved the highest average of dry matter yield of 33.27 ton ha-1.


2006 ◽  
Vol 46 (1) ◽  
pp. 93 ◽  
Author(s):  
G. K. McDonald

High spatial and temporal variability is an inherent feature of dryland cereal crops over much of the southern cereal zone. The potential limitations to crop growth and yield of the chemical properties of the subsoils in the region have been long recognised, but there is still an incomplete understanding of the relative importance of different traits and how they interact to affect grain yield. Measurements were taken in a paddock at the Minnipa Agriculture Centre, Upper Eyre Peninsula, South Australia, to describe the effects of properties in the topsoil and subsoil on plant dry matter production, grain yield and plant nutrient concentrations in two consecutive years. Wheat (Triticum aestivum L. cv. Worrakatta) was grown in the first year and barley (Hordeum vulgare L. cv. Barque) in the second. All soil properties except pH showed a high degree of spatial variability. Variability in plant nutrient concentration, plant growth and grain yield was also high, but less than that of most of the soil properties. Variation in grain yield was more closely related to variation in dry matter at maturity and in harvest index than to dry matter production at tillering and anthesis. Soil properties had a stronger relationship with dry matter production and grain yield in 1999, the drier of the two years. Colwell phosphorus concentration in the topsoil (0–0.15 m) was positively correlated with dry matter production at tillering but was not related to dry matter production at anthesis or with grain yield. Subsoil pH, extractable boron concentration and electrical conductivity (EC) were closely related. The importance of EC and soil extractable boron to grain yield variation increased with depth, but EC had a greater influence than the other soil properties. In a year with above-average rainfall, very little of the variation in yield could be described by any of the measured soil variables. The results suggest that variation in EC was more important to describing variation in yield than variation in pH, extractable boron or other chemical properties.


2014 ◽  
Vol 47 (1) ◽  
pp. 107-114
Author(s):  
Z. Fooladivanda ◽  
M. Hassanzadehdelouei ◽  
N. Zarifinia

ABSTRACT Water stress is known as the major threat to reduced growth and yield of plants in arid and semi-arid regions. Potassium is one of the indicators of plant responses to water stress. To evaluate the impact of water stress and levels of potassium on yield and yield components of two varieties of mung bean (Vigna radiata) (promising lines VC6172 and Indian), an experiment in the form of split factorial, based on randomized complete block design with three replicates was conducted in 2011, at the research farm of Safi-Abad Dezfool, Iran (latitude 32°16’ N, longitude 48°26’ E and altitude 82.9 m above sea level) .Water stress in three levels: irrigation at 120 (no stress), 180 (moderate stress) and 240 (severe stress) mm evaporation from pan, were allocated to the main plots and potassium fertilizer at three levels (0, 90, 180 kg /ha) and two varieties of mung bean (promising line VC6172 and Indian) were allotted to the sub-plots. Results showed that water stress and potassium fertilizer significantly affect all traits. The highest grain yield (2093 kg /ha) was obtained from no stress treatment in the case of 180 kg /ha potassium. Total dry matter, number of pods and grain yield, were significantly different between the two varieties. The interaction between fertilizer and variety, on dry matter and grain yield and the interaction between irrigation and variety, on dry matter were significant. We conclude that use of potassium fertilizer can reduce the adverse effects of water stress.


Author(s):  
John Bokaligidi Lambon ◽  
Joseph Sarkodie- Addo ◽  
James Mantent Kombiok

Two experiments were conducted in the Savelugu-Nanton Municipality of the Northern Region of Ghana in 2012 and 2013 to assess the effect of N fertilizer on growth, N remobilization and grain yield of three local varieties of soybean (Glycine max [L] Merill). The experiments were a 3 x 4 factorial laid in Randomized Complete Block Design (RCBD) with four replications. Factor A was soybean varieties (Jenguma, Quarshie, Ahotor); Factor B was 0, 15, 30 and 45 kg N ha-1. The experimental fields were planted manually on the flat by drilling and later thinned to 2 plants hill-1 at 0.50 m × 0.10 m with a population of about 400 000 plants ha-1. Growth and yield parameters measured were plant height, nodule number plant-1, nodule dry weight plant-1, percent nodule effectiveness, number of pods plant-1, number of seeds pod-1, 100 seed weight, harvest index and grain yield. The results showed that the control recorded lower figures in all growth parameters. Nitrogen remobilization was also observed in all plots, which indicate that soybean needs greater levels of N during grain filling. Again, N remobilization and soybean yield were highest in the 45 kg N ha-1 treatment compared to the other treatments. However, considering the overall yields, farmers in the study area should be advised to adopt starter N fertilization of soybean for higher yields as the soils are highly degraded in soil fertility.


2017 ◽  
Vol 7 (4) ◽  
pp. 473
Author(s):  
Diego Bortolini ◽  
Luís César Cassol ◽  
Jonatas Thiago Piva ◽  
Cristiam Bosi ◽  
Kassiano Felipe Rocha

The aim of this study was to evaluate the behavior of chemical properties and crop yields during five years after liming, in a consolidated no-tillage system area and indicate a base saturation index to serve as a criterion for recommendation. The experiment was conducted in a randomized complete block design with four repetitions, being the treatments the five lime doses (0, 2.4, 4.8, 7.2 and 9.6 Mg ha-1) applied and maintained on the soil surface. Soil chemical properties were evaluated in eight soil sampling, in the layers 0 to 0.025; 0.025 to 0.05; 0.05 to 0.10; 0.10 to 0.15; 0.15 to 0.20 and 0.20 to 0.40 m, besides crop grain yield (wheat, soybean and corn) and black oat dry matter yield, totaling five years of evaluation. The surface liming in no-tillage system increased the exchangeable magnesium and calcium contents, base saturation and soil pH and reduced the exchangeable aluminum content. The cumulative grain yield (six crops) and black oat dry matter yield (three crops) was not influenced by liming. These results suggested, from this study conditions, that the value of 50% of base saturation should be adopted as a criterion for liming for crops implanted under consolidated no-tillage systems.


2018 ◽  
Vol 16 (3) ◽  
pp. 357-365
Author(s):  
Syeda Ariana Ferdous ◽  
Mohammad Noor Hossain Miah ◽  
Mozammel Hoque ◽  
Sazzad Hossain ◽  
Ahmed Khairul Hasan

The effect of lime and fertilizer application, as the management of soil acidity, on the growth and yield of rice cv. BRRI dhan50 was investigated during Aman rice season at the Agronomy Field Laboratory of Sylhet Agricultural University, Bangladesh. The experiment was consisted of two factors namely lime and fertilizer. There were four levels of lime (0, 0.50, 1.00, and 1.50 t ha–1 of CaCO3.MgCO3) and three levels of fertilizers (control, FYM @ 10 t ha–1, and chemical fertilizer @ 100-30-42-4-3-0.4 kg ha–1 of N-P-K-Ca-S-Zn). The experiment was laid out in a randomized complete block design with three replications where the unit plot size was 4.0 m x 2.5 m. Growth parameters, yield components and yield of BRRIdhan 50 rice increased with increasing lime rate in association of fertilizer in acidic soil. The highest grain yield (2.90 t ha–1) was recorded from the application of 1.50 t ha–1 lime and the lowest (2.06 t ha–1) was from control (0t ha–1), irrespective of fertilizer. On the other hand, the best effect of fertilizers on grain yield (3.08 t ha–1) was found with the application of FYM @ 10 t ha–1 and the lowest yield (1.59 t ha–1) was in control. The treatment combination of lime 1.50 t ha–1 and FYM (@ 10 t ha–1 produced the highest grain yield (3.60 t ha–1), which was followed by treatment combination of lime 1.50 t ha–1 and chemical fertilizer @ 100-30-42-4-3-0.4 kg ha–1 of N-P-K-Ca-S-Zn (3.28 t ha–1). Additionally, application of lime and FYM improved the soil fertility and properties of acidic soil for crop production by increasing the pH, organic matter and availability of some essential nutrients. From the study, it was indicated that both FYM and lime could affect to enhance the grain yield of rice in acidic soil. J. Bangladesh Agril. Univ. 16(3): 357–365, December 2018


Agriculture ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 109 ◽  
Author(s):  
Kyi Moe ◽  
Aung Htwe ◽  
Thieu Thu ◽  
Yoshinori Kajihara ◽  
Takeo Yamakawa

The decline in rice yields as a result of excessive chemical fertilizer (CF) inputs is a matter of great concern in rice-growing regions of Asia. In two-year’s field experiments, the nitrogen, phosphorus, and potassium (NPK) status, growth characteristics and yield of rice were examined by application of poultry manure (PM), cow manure (CM) and compost (CP). Organic fertilizers were applied as EMN (estimated mineralizable N) based on their total N content. Six treatments were assigned in a randomized complete block design: (1) no-N fertilizer (N0); (2) 50% CF (CF50), (3) 100% CF (CF100); 50% CF + 50% EMN from (4) PM or (5) CM or (6) CP. Compared with CF100, the CF50PM50 (total N ≥ 4%) accumulated higher N, P and K content in leaf, sheath, panicle and seeds, resulting in greater growth and yield. The CF50PM50 increased yield by 8.69% and 9.70%, dry matter by 4.76% and 5.27% over CF100 in both years. The continuous application of CF50CM50 (total N < 4%) and CF50CP50 (total N < 4%) treatments led to similar NPK contents but higher yields than those of CF100 treatment in 2018. In conclusion, the organic fertilizer (total N ≥ 4%) with the EMN method enhances higher N availability in each year. Continuous application of organic fertilizer (total N < 4%) over two years effectively increased N availability in the second year. The 50% organic fertilizer (total N ≥ 4%) and 50% CF led to increased NPK availability and rice yields over the 100% CF treatment, reducing CF usage and leading for sustainable agriculture.


Sign in / Sign up

Export Citation Format

Share Document