scholarly journals A Process Flow Based Design Model Using Aspect Based Reusability

2012 ◽  
Vol 2 (3) ◽  
pp. 57-64 ◽  
Author(s):  
G. Shanmgasundaram ◽  
V. Prasanna Venkatesan ◽  
C. Punitha Devi
Keyword(s):  
Author(s):  
Fred Y. Chang ◽  
Victer Chan

Abstract This paper describes a novel de-process flow by combining cobalt silicide / nitride wet etch with KOH electrochemical wet etch (ECW) to identify leaky gate in silicided deep sub-micron process technology. Traditionally, leaky gate identification requires direct confirmation by gate level electrical or emission detection technique. Ohtani [1] used KOH electrochemical etch application to identify nonsilicided leaky gate capacitor in DRAM without using the above confirmation. The result of the case study demonstrates the expanded application of ECW etch to both silicided 0.18um logic and SRAM devices. Voltage contrast at metal 1 to assist leaky gate localization is also proposed. By combining both techniques, the possibility for isolating gate related defects are greatly enhanced. Case studies also show the advantages of the proposed technique over conventional poly level voltage contrast in leaky gate identification especially with devices that use local interconnect and nitride liner process.


Author(s):  
Chun-An Huang ◽  
Han-Yun Long ◽  
King-Ting Chiang ◽  
Li Chuang ◽  
Kevin Tsui

Abstract This paper demonstrates a new de-process flow for MEMS motion sensor failure analysis, using layer by layer deprocessing to locate defect points. Analysis tools used in this new process flow include IR optical microscopy, thermal system, SEM and a cutting system to de-process of MEMS motion sensor and successful observation defect points.


2020 ◽  
Vol 91 (5) ◽  
pp. 70-76
Author(s):  
E.V. LEONTIEV ◽  
◽  

The paper considers the system "beam - elastic foundation", in which a beam with free edges was at first on a solid elastic foundation, but when a defect suddenly forms in the foundation under the right side of the beam, part of foundation was removed from design model. As a result of calculations performed by the method of initial parameters, the displacements and internal forces for the static problem are determined. The dynamic problem of determining the forces and displacements was solved, taking into account the three vibration loads F (t) = F sinγt applied at arbitrary points d when the conditions for supporting the right side of the beam on an elastic foundation were changed, the values of the dynamics coefficients were determined. Conditions are formulated that must be taken into account when analyzing the dynamic behavior of a structure under the influence of vibration loads in the case of a change in the conditions of bearing on an elastic foundation.


Sign in / Sign up

Export Citation Format

Share Document