scholarly journals Endocrine-disrupting activity of mancozeb

2021 ◽  
Vol 71 (6) ◽  
pp. 491-507
Author(s):  
Anatoly Skalny ◽  
Michael Aschner ◽  
Monica Paoliello ◽  
Abel Santamaria ◽  
Natalia Nikitina ◽  
...  

The objective of the present study was to review the existing data on the mechanisms involved in the endocrine disrupting activity of mancozeb (MCZ) in its main targets, including thyroid and gonads, as well as other endocrine tissues that may be potentially affected by MCZ. MCZ exposure was shown to interfere with thyroid functioning through impairment of thyroid hormone synthesis due to inhibition of sodium-iodine symporter (NIS) and thyroid peroxidase (TPO) activity, as well as thyroglobulin expression. Direct thyrotoxic effect may also contribute to thyroid pathology upon MCZ exposure. Gonadal effects of MCZ involve inhibition of sex steroid synthesis due to inhibition of P450scc (CYP11A1), as well as 3b-HSD and 17b-HSD. In parallel with altered hormone synthesis, MCZ was shown to down-regulate androgen and estrogen receptor signaling. Taken together, these gonad-specific effects result in development of both male and female reproductive dysfunction. In parallel with clearly estimated targets for MCZ endocrine disturbing activity, namely thyroid and gonads, other endocrine tissues may be also involved. Specifically, the fungicide was shown to affect cortisol synthesis that may be mediated by modulation of CYP11B1 activity. Moreover, MCZ exposure was shown to interfere with PPARg signaling, being a key regulator of adipogenesis. The existing data also propose that endocrine-disrupting effects of MCZ exposure may be mediated by modulation of hypothalamus-pituitary-target axis. It is proposed that MCZ neurotoxicity may at least partially affect central mechanisms of endocrine system functioning. However, further studies are required to unravel the mechanisms of MCZ endocrine disrupting activity and overall toxicity.

2018 ◽  
Vol 9 (3) ◽  
pp. 16-21
Author(s):  
S. D. Megeryan

The aim of this study was to identify the specifics of the endocrine system functioning in males professionally involved in sports. We have observed 70 sportsmen and 70 students of the Maritime Academy. The check-up included the following procedures: the ultrasound examination of the thyroid gland, assessment of the hormonal status (measuring concentrations of prolactin, cortisol, thyroid stimulating hormone, free thyroxin, antibodies to thyroid peroxidase in the blood serum), complete blood count (assessment of the hemoglobin level), assessment of microelements in the blood serum (calcium and magnesium levels). The study has established that athletes have significantly higher concentrations of thyroid-stimulating hormone and lower concentrations of cortisol and free thyroxin, as compared to people not involved in sports. A positive correlation between the levels of cortisol, thyroid-stimulating hormone, free thyroxin and prolactin in the blood serum has been found in athletes. The high levels of thyroid-stimulating hormone and relatively low values of cortisol may be considered as indicators of a better athlete’s performance and a reflection of the optimal adaptation of the pituitary-thyroid and pituitary-adrenal systems to systematic high physical loads.


Author(s):  
Giuseppe Lisco ◽  
Vito Angelo Giagulli ◽  
Michele Iovino ◽  
Edoardo Guastamacchia ◽  
Giovanni De Pergola ◽  
...  

Background: Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds deriving from different human activities and are widely spread into the environment, contributing to indoor and outdoor pollution. EDCs may be conveyed by food and water consumption and skin, airways, placental, and breastfeeding. Upon entering the circulation, they can interfere with endocrine system homeostasis by several mechanisms. Aim: In this narrative review, the authors overviewed the leading mechanisms by which EDCs interact and disrupt the endocrine system, leading to possible human health concerns. Results: The leading mechanisms of EDCs-related toxicity have been illustrated in in vitro studies and animal models and may be summarized as follows: receptor agonism and antagonism; modulation of hormone receptor expression; interference with signal transduction in hormone-responsive cells; epigenetic modifications in hormone-producing or hormone-responsive cells; interference with hormone synthesis; interference with hormone transport across cell membranes; interference with hormone metabolism or clearance; interference with the destiny of hormone-producing or hormone-responsive cells. Discussion: Despite these well-defined mechanisms, some limitations do not allow for conclusive assumptions. Indeed, epidemiological and ecological studies are currently lacking and usually refer to a specific cluster of patients (occupational exposure). Methodological aspects could further complicate the issue since these studies could require a long time to provide useful information. The lack of a real unexposed group in environmental conditions, possible interference of EDCs mixture on biological results, and unpredictable dose-response curves for some EDCs should also be considered significant limitations. Conclusion: Given these limitations, specific observational and long-term studies are needed to identify at-risk populations for adequate treatment of exposed patients and effective prevention plans against excessive exposure to EDCs.


Reproduction ◽  
2001 ◽  
pp. 857-864 ◽  
Author(s):  
◽  
MP Gunderson

Wildlife and human populations are affected by contaminants in natural settings. This problem has been a growing concern over the last decade with the realization that various environmental chemicals can alter the development and functioning of endocrine organs, cells and target tissues. Documented disruptions or alterations in reproductive activity, morphology or physiology in wildlife populations have been correlated with contaminant-induced modifications in endocrine system functioning. Alterations of the endocrine system are complex, and not limited to a particular organ or molecular mechanism. For instance, contaminants have been shown to (1) act as hormone receptor agonists or antagonists, (2) alter hormone production at its endocrine source, (3) alter the release of stimulatory or inhibitory hormones from the pituitary or hypothalamus, (4) alter hepatic enzymatic biotransformation of hormones, and (5) alter the concentration or functioning of serum-binding proteins, altering free hormone concentrations in the serum. This review focuses on two of these alterations, altered hormone synthesis and hepatic biotransformation, as a number of recent studies indicate that these actions are important components of endocrine disruption in developing organisms. The possible role of contaminants in altering sex determination mechanisms is also examined.


2021 ◽  
Vol 22 (2) ◽  
pp. 933
Author(s):  
Maria E. Street ◽  
Karine Audouze ◽  
Juliette Legler ◽  
Hideko Sone ◽  
Paola Palanza

Endocrine disrupting chemicals (EDCs) are exogenous chemicals which can disrupt any action of the endocrine system, and are an important class of substances which play a role in the Developmental Origins of Health and Disease (DOHaD) [...]


2020 ◽  
Vol 3 (2) ◽  
pp. 24
Author(s):  
Shiela Stefani ◽  
Lukman Halim ◽  
Diyah Eka Andayani ◽  
Fiastuti Witjaksono

Introduction: Thyroid gland has the highest selenium content compare with other endocrine organs. Enzyme that catalyzing thyroid hormone activation, iodothyronine deiodinases, were identified as selenocysteine-containing proteins. Selenium levels in soil and rice consumed in Indonesia were lower than in several other countries, which can increase the risk of selenium deficiency.Methods: This is an article review of the current literatures published up to November 2018 about the role of selenium in hyperthyroid.Result: Several studies have shown that selenium supplementation can be beneficial in patients with Graves disease and autoimmune thyroiditis. Selenium has an important immunomodulatory effect, but the effects of selenium supplementation in hyperthyroid has not been conclude. Data regarding selenium intake, prevalence of deficiency, and the relationship between selenium and thyroid disease in Indonesia are limited. Various studies of selenium supplementation in thyroid disease provide controversial results, so there are no guidelines that include selenium as standard therapy hyperthyroid. Selenium supplementation can enhance the restoration of biochemical euthyroidism in Graves disease and was associated with a significant decrease in the levels of thyroid peroxidase antibodies in autoimmune thyroiditis.Conclusions: Micronutrients that play a role in thyroid hormone synthesis and maintain thyroid function in addition to selenium are iodine, iron, zinc, and vitamin A. By correcting the deficit of selenium, and meeting other micronutrient requirements may provide health benefits in patient with hyperthyroid.


2019 ◽  
Author(s):  
Samantha J. Baker ◽  
John R. Porterfield Jr

In the adult, the thyroid gland is located in the central compartment of the neck on the anterolateral aspect of the cervical trachea between the carotid sheaths. Patients with thyroid disorders require attentive care, and safe, successful surgery of the thyroid is dependent on an intimate knowledge of the anatomy and physiology of the gland. This review discusses nerve branches and function; arterial and venous blood supply; lymphatic drainage; histology; physiology; and thyroid hormone synthesis, secretion, and regulation. Nerve injuries and postoperative complications are summarized, as are functions of thyroid hormones. A thorough understanding of these relationships is imperative for proper medical recommendations, surgical procedure selection, and meticulous surgical technique to avoid complications. To provide safe care of patients with thyroid disorders, treating physicians must embrace the intricate details of the anatomy and physiology of this unique gland to avoid potentially devastating complications. This review contains 5 figures, 3 tables, and 29 references. Key Words: brachial cleft, lymphatic zones, recurrent laryngeal nerve, superior laryngeal nerve, nerve injury, thyroglossal duct cysts, thyroid, thyroidectomy


2001 ◽  
Vol 14 (1) ◽  
pp. 59-64
Author(s):  
R. Yoshiyuki Osamura ◽  
Toshiki Iwasaka ◽  
Shinobu Umemura

2019 ◽  
Vol 34 (4) ◽  
pp. 309-325 ◽  
Author(s):  
Chinonye Doris Onuzulu ◽  
Oluwakemi Anuoluwapo Rotimi ◽  
Solomon Oladapo Rotimi

Abstract Endocrine disrupting chemicals (EDCs) are xenobiotics which adversely modify the hormone system. The endocrine system is most vulnerable to assaults by endocrine disruptors during the prenatal and early development window, and effects may persist into adulthood and across generations. The prenatal stage is a period of vulnerability to environmental chemicals because the epigenome is usually reprogrammed during this period. Bisphenol A (BPA), lead (Pb), and dichlorodiphenyltrichloroethane (DDT) were chosen for critical review because they have become serious public health concerns globally, especially in Africa where they are widely used without any regulation. In this review, we introduce EDCs and describe the various modes of action of EDCs and the importance of the prenatal and developmental windows to EDC exposure. We give a brief overview of epigenetics and describe the various epigenetic mechanisms: DNA methylation, histone modifications and non-coding RNAs, and how each of them affects gene expression. We then summarize findings from previous studies on the effects of prenatal exposure to the endocrine disruptors BPA, Pb and DDT on each of the previously described epigenetic mechanisms. We also discuss how the epigenetic alterations caused by these EDCs may be related to disease processes.


Sign in / Sign up

Export Citation Format

Share Document