scholarly journals Endocrine Disrupting Chemicals: Current Understanding, New Testing Strategies and Future Research Needs

2021 ◽  
Vol 22 (2) ◽  
pp. 933
Author(s):  
Maria E. Street ◽  
Karine Audouze ◽  
Juliette Legler ◽  
Hideko Sone ◽  
Paola Palanza

Endocrine disrupting chemicals (EDCs) are exogenous chemicals which can disrupt any action of the endocrine system, and are an important class of substances which play a role in the Developmental Origins of Health and Disease (DOHaD) [...]

2017 ◽  
Vol 33 (7) ◽  
pp. 601-609 ◽  
Author(s):  
Iwona Sidorkiewicz ◽  
Kamil Zaręba ◽  
Sławomir Wołczyński ◽  
Jan Czerniecki

Endocrine-disrupting chemicals (EDCs) are exogenous compounds that can cause disturbances in the endocrine system and have multiple harmful effects on health by targeting different organs and systems in the human body. Mass industrial production and widespread use of EDCs have resulted in worldwide contamination. Accumulating evidence suggest that human exposure to EDCs is related to the impairment of male reproductive function and can interrupt other hormonally regulated metabolic processes, particularly if exposure occurs during early development. Investigation of studies absent in previous reviews and meta-analysis of adverse effects of EDCs on functioning of the male reproductive system is the core of this work. Four main modes of action of EDCs on male fertility have been summarized in this review. First, studies describing estrogen- pathway disturbing chemicals are investigated. Second, androgen-signaling pathway alterations and influence on androgen sensitive tissues are examined. Third, evaluation of steroidogenesis dysfunction is discussed by focusing on the steroid hormone biosynthesis pathway, which is targeted by EDCs. Last, the reportedly destructive role of reactive oxygen species (ROS) on sperm function is discussed. Spermatogenesis is a remarkably complex process, hence multiple studies point out various dysfunctions depending on the development state at which the exposure occurred. Collected data show the need to account for critical windows of exposure such as fetal, perinatal and pubertal periods as well as effects of mixtures of several compounds in future research.


Toxics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Mathilda Alsen ◽  
Catherine Sinclair ◽  
Peter Cooke ◽  
Kimia Ziadkhanpour ◽  
Eric Genden ◽  
...  

Endocrine disruptive chemicals (EDC) are known to alter thyroid function and have been associated with increased risk of certain cancers. The present study aims to provide a comprehensive overview of available studies on the association between EDC exposure and thyroid cancer. Relevant studies were identified via a literature search in the National Library of Medicine and National Institutes of Health PubMed as well as a review of reference lists of all retrieved articles and of previously published relevant reviews. Overall, the current literature suggests that exposure to certain congeners of flame retardants, polychlorinated biphenyls (PCBs), and phthalates as well as certain pesticides may potentially be associated with an increased risk of thyroid cancer. However, future research is urgently needed to evaluate the different EDCs and their potential carcinogenic effect on the thyroid gland in humans as most EDCs have been studied sporadically and results are not consistent.


Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Chien-Ning Hsu ◽  
You-Lin Tain

The “developmental origins of health and disease” theory indicates that many adult-onset diseases can originate in the earliest stages of life. The developing kidney has emerged as being particularly vulnerable to adverse in utero conditions leading to morphological and functional changes, namely renal programming. Emerging evidence indicates oxidative stress, an imbalance between reactive oxygen/nitrogen species (ROS/RNS) and antioxidant systems, plays a pathogenetic role in the developmental programming of kidney disease. Conversely, perinatal use of antioxidants has been implemented to reverse programming processes and prevent adult-onset diseases. We have termed this reprogramming. The focus of this review is twofold: (1) To summarize the current knowledge on oxidative stress implicated in renal programming and kidney disease of developmental origins; and (2) to provide an overview of reprogramming effects of perinatal antioxidant therapy on renal programming and how this may prevent adult-onset kidney disease. Although early-life oxidative stress is implicated in mediating renal programming and adverse offspring renal outcomes, and animal models provide promising results to allow perinatal antioxidants applied as potential reprogramming interventions, it is still awaiting clinical translation. This presents exciting new challenges and areas for future research.


Author(s):  
Fiona Lynch ◽  
Sharon Lewis ◽  
Ivan Macciocca ◽  
Jeffrey M. Craig

Abstract Epigenetics is likely to play a role in the mediation of the effects of genes and environment in risk for many non-communicable diseases (NCDs). The Developmental Origins of Health and Disease (DOHaD) theory presents unique opportunities regarding the possibility of early life interventions to alter the epigenetic makeup of an individual, thereby modifying their risk for a variety of NCDs. While it is important to determine how we can lower the risk of these NCDs, it is equally important to understand how the public’s knowledge and opinion of DOHaD and epigenetic concepts may influence their willingness to undertake such interventions for themselves and their children. In this review, we provide an overview of epigenetics, DOHaD, NCDs, and the links between them. We explore the issues surrounding using epigenetics to identify those at increased risk of NCDs, including the concept of predictive testing of children. We also outline what is currently understood about the public’s understanding and opinion of epigenetics, DOHaD, and their relation to NCDs. In doing so, we demonstrate that it is essential that future research explores the public’s awareness and understanding of epigenetics and epigenetic concepts. This will provide much-needed information which will prepare health professionals for the introduction of epigenetic testing into future healthcare.


Endocrinology ◽  
2006 ◽  
Vol 147 (6) ◽  
pp. s4-s10 ◽  
Author(s):  
David Crews ◽  
John A. McLachlan

Abstract Endocrine-disrupting chemicals (EDCs) in the environment have been linked to human health and disease. This is particularly evident in compounds that mimic the effects of estrogens. Exposure to EDCs early in life can increase risk levels of compromised physical and mental health. Epigenetic mechanisms have been implicated in this process. Transgenerational consequences of EDC exposure is also discussed in both a proximate (mechanism) and ultimate (evolution) context as well as recent work suggesting how such transmission might become incorporated into the genome and subject to selection. We suggest a perspective for exploring and ultimately coming to understand diseases that may have environmental or endocrine origins.


2021 ◽  
Vol 3 ◽  
Author(s):  
Radha Dutt Singh ◽  
Kavita Koshta ◽  
Ratnakar Tiwari ◽  
Hafizurrahman Khan ◽  
Vineeta Sharma ◽  
...  

Developmental origin of health and disease postulates that the footprints of early life exposure are followed as an endowment of risk for adult diseases. Epidemiological and experimental evidence suggest that an adverse fetal environment can affect the health of offspring throughout their lifetime. Exposure to endocrine disrupting chemicals (EDCs) during fetal development can affect the hormone system homeostasis, resulting in a broad spectrum of adverse health outcomes. In the present review, we have described the effect of prenatal EDCs exposure on cardio-metabolic-renal health, using the available epidemiological and experimental evidence. We also discuss the potential mechanisms of their action, which include epigenetic changes, hormonal imprinting, loss of energy homeostasis, and metabolic perturbations. The effect of prenatal EDCs exposure on cardio-metabolic-renal health, which is a complex condition of an altered biological landscape, can be further examined in the case of other environmental stressors with a similar mode of action.


2001 ◽  
Vol 14 (1) ◽  
pp. 59-64
Author(s):  
R. Yoshiyuki Osamura ◽  
Toshiki Iwasaka ◽  
Shinobu Umemura

2019 ◽  
Vol 34 (4) ◽  
pp. 309-325 ◽  
Author(s):  
Chinonye Doris Onuzulu ◽  
Oluwakemi Anuoluwapo Rotimi ◽  
Solomon Oladapo Rotimi

Abstract Endocrine disrupting chemicals (EDCs) are xenobiotics which adversely modify the hormone system. The endocrine system is most vulnerable to assaults by endocrine disruptors during the prenatal and early development window, and effects may persist into adulthood and across generations. The prenatal stage is a period of vulnerability to environmental chemicals because the epigenome is usually reprogrammed during this period. Bisphenol A (BPA), lead (Pb), and dichlorodiphenyltrichloroethane (DDT) were chosen for critical review because they have become serious public health concerns globally, especially in Africa where they are widely used without any regulation. In this review, we introduce EDCs and describe the various modes of action of EDCs and the importance of the prenatal and developmental windows to EDC exposure. We give a brief overview of epigenetics and describe the various epigenetic mechanisms: DNA methylation, histone modifications and non-coding RNAs, and how each of them affects gene expression. We then summarize findings from previous studies on the effects of prenatal exposure to the endocrine disruptors BPA, Pb and DDT on each of the previously described epigenetic mechanisms. We also discuss how the epigenetic alterations caused by these EDCs may be related to disease processes.


2020 ◽  
Author(s):  
Grégoire T. Freschet ◽  
Catherine Roumet ◽  
Louise H. Comas ◽  
Monique Weemstra ◽  
A. Glyn Bengough ◽  
...  

2011 ◽  
Vol 128 (3) ◽  
pp. S4-S24 ◽  
Author(s):  
Nicola A. Hanania ◽  
Monroe J. King ◽  
Sidney S. Braman ◽  
Carol Saltoun ◽  
Robert A. Wise ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document