scholarly journals Non-stationary influence function for an unbounded anisotropic Kirchhoff-Love shell

2020 ◽  
Vol 18 (4) ◽  
pp. 737-744
Author(s):  
Natalia Lokteva ◽  
Dmitry Serdyuk ◽  
Pavel Skopintsev

The purpose of this article is to investigate the process of the influence of a nonstationary load on an arbitrary region of an elastic anisotropic cylindrical shell. The approach to the study of the propagation of forced transient oscillations in the shell is based on the method of the influence function, which represents normal displacements in response to the action of a single load concentrated along the coordinates. For the mathematical description of the instantaneous concentrated load, the Dirac delta functions are used. To construct the influence function, expansions in exponential Fourier series and integral Laplace and Fourier transforms are applied to the original differential equations. The original integral Laplace transform is found analytically, and for the inverse integral Fourier transform, a numerical method for integrating rapidly oscillating functions is used. The convergence of the result in the Chebyshev norm is estimated. The practical significance of the work is that the obtained results can be used by scientists or students to solve new problems of dynamics of cylindrical shells on an elastic basis under pulse loads. The found non-stationary influence function opens up possibilities for studying the stress-strain state, solving nonstationary inverse and contact problems for anisotropic shells, studying nonstationary dynamics in the case of nonzero initial conditions, and also when constructing integral equations of the boundary element method.

1998 ◽  
Vol 76 (9) ◽  
pp. 659-677 ◽  
Author(s):  
N Beaudoin

From few simple and relatively well-known mathematical tools, an easily understandable, though powerful, method has been devised that gives many useful results about numerical functions. With mere Taylor expansions, Dirac delta functions and Fourier transform with its discrete counterpart, the DFT, we can obtain, from a digitized function, its integral between any limits, its Fourier transform without band limitations and its derivatives of any order. The same method intrinsically produces polynomial splines of any order and automatically generates the best possible end conditions. For a given digitized function, procedures to determine the optimum parameters of the method are presented. The way the method is structured makes it easy to estimate fairly accurately the error for any result obtained. Tests conducted on nontrivial numerical functions show that relative as well as absolute errors can be much smaller than 10-100, and there is no indication that even better results could not be obtained. The method works with real or complex functions as well; hence, it can be used for inverse Fourier transforms too. Implementing the method is an easy task, particularly if one uses symbolic mathematical software to establish the formulas. Once formulas are worked out, they can be efficiently implemented in a fast compiled program. The method is relatively fast; comparisons between computation time for fast Fourier transform and Fourier transform computed at different orders are presented. Accuracy increases exponentially while computation time increases quadratically with the order. So, as long as one can afford it, the trade-off is beneficial. As an example, for the fifth order, computation time is only ten times greater than that of the FFT while accuracy is 108 times better. Comparisons with other methods are presented.PACS Nos.: 02.00 and 02.60


2020 ◽  
Vol 86 (8) ◽  
pp. 43-48
Author(s):  
V. V. Semenov

Development of the technologies simulating optical processes in an arbitrary dispersed medium is one of the important directions in the field of optical instrumentation and can provide computer simulation of the processes instead of using expensive equipment in physical experiments. The goal of the study is simulation of scattering of optical radiation by aerosol media using the finite element method to show a practical significance of the results of virtual experiments. We used the following initial conditions of the model: radius of a spherical particle of distilled water is 1 μm, wavelength of the incident optical radiation is 0.6328 μm, air is a medium surrounding the particle. An algorithm for implementation of the model by the finite element method is proposed. A subprogram has been developed which automates a virtual experiment for a group of particles to form their random arrangement in the model and possibility of changing their geometric shape and size within predetermined intervals. Model dependences of the radiation intensity on the scattering angle for single particle and groups of particles are presented. Simulation of the light transmission through a dispersed medium provides development of a given photosensor design and determination of the minimum number of photodetectors when measuring the parameters of the medium under study via analysis of the indicatrix of scattering by a group of particles.


2007 ◽  
Vol 345-346 ◽  
pp. 845-848
Author(s):  
Joo Yong Cho ◽  
Han Suk Go ◽  
Usik Lee

In this paper, a fast Fourier transforms (FFT)-based spectral analysis method (SAM) is proposed for the dynamic analysis of spectral element models subjected to the non-zero initial conditions. To evaluate the proposed SAM, the spectral element model for the simply supported Bernoulli-Euler beam is considered as an example problem. The accuracy of the proposed SAM is evaluated by comparing the dynamic responses obtained by SAM with the exact analytical solutions.


1969 ◽  
Vol 51 (6) ◽  
pp. 2359-2362 ◽  
Author(s):  
Kenneth G. Kay ◽  
H. David Todd ◽  
Harris J. Silverstone

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Hansol Park

<p style='text-indent:20px;'>We present a high-dimensional Winfree model in this paper. The Winfree model is a mathematical model for synchronization on the unit circle. We generalize this model compare to the high-dimensional sphere and we call it the Winfree sphere model. We restricted the support of the influence function in the neighborhood of the attraction point to a small diameter to mimic the influence function as the Dirac delta distribution. We can obtain several new conditions of the complete phase-locking states for the identical Winfree sphere model from restricting the support of the influence function. We also prove the complete oscillator death(COD) state from the exponential <inline-formula><tex-math id="M1">\begin{document}$ \ell^1 $\end{document}</tex-math></inline-formula>-stability and the existence of the equilibrium solution.</p>


2019 ◽  
Vol 65 (1) ◽  
pp. 71 ◽  
Author(s):  
Y. Muniz ◽  
Anderson José Fonseca ◽  
C. Farina

After reviewing how the Dirac delta contributions to the electrostatic and magnetostatic fields of a point electric dipole and a point magnetic dipole are usually introduced, we present an alternative procedure for obtaining these terms based on a regularization prescription similar to that used in the computation of the transverse and longitudinal delta functions. We think this method may be useful for the students in other analogous calculations.


Quantum 20/20 ◽  
2019 ◽  
pp. 1-20
Author(s):  
Ian R. Kenyon

Basic experimental evidence is sketched: the black body radiation spectrum, the photoeffect, Compton scattering and electron diffraction; the Bohr model of the atom. Quantum mechanics is reviewed using the Copenhagen interpretation: eigenstates, observables, hermitian operators and expectation values are explained. Wave-particle duality, Schrödinger’s equation, and expressions for particle density and current are described. The uncertainty principle, the collapse of the wavefunction, Schrödinger’s cat and the no-cloning theorem are discussed. Dirac delta functions and the usage of wavepackets are explained. An introduction to state vectors in Hilbert space and the bra-ket notation is given. Abstracts of special relativity and Lorentz invariants follow. Minimal electromagnetic coupling and the gauge transformations are explained.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 566
Author(s):  
Aliki D. Muradova ◽  
Georgios E. Stavroulakis

A review of mathematical models for elastic plates with buckling and contact phenomena is provided. The state of the art in this domain is presented. Buckling effects are discussed on an example of a system of nonlinear partial differential equations, describing large deflections of the plate. Unilateral contact problems with buckling, including models for plates, resting on elastic foundations, and contact models for delaminated composite plates, are formulated. Dynamic nonlinear equations for elastic plates, which possess buckling and contact effects are also presented. Most commonly used boundary and initial conditions are set up. The advantages and disadvantages of analytical, semi-analytical, and numerical techniques for the buckling and contact problems are discussed. The corresponding references are given.


Sign in / Sign up

Export Citation Format

Share Document