scholarly journals Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus

Mycobiology ◽  
2016 ◽  
Vol 44 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Kyung Hoan Im ◽  
Trung Kien Nguyen ◽  
Jaehyuk Choi ◽  
Tae Soo Lee
2014 ◽  
Vol 167 ◽  
pp. 33-40 ◽  
Author(s):  
Le Duy Khuong ◽  
Ryuichiro Kondo ◽  
Rizalinda De Leon ◽  
To Kim Anh ◽  
Sadatoshi Meguro ◽  
...  

2011 ◽  
Vol 48 (3) ◽  
pp. 273-277 ◽  
Author(s):  
Kenji Okamoto ◽  
Yasuyuki Nitta ◽  
Nitaro Maekawa ◽  
Hideshi Yanase

2018 ◽  
Vol 61 (6) ◽  
pp. 1997-2006 ◽  
Author(s):  
Mengxing Li ◽  
Stephen M. Marek ◽  
Jiaqi Peng ◽  
Zhongdong Liu ◽  
Mark R. Wilkins

Abstract. The white-rot fungus is capable of selectively degrading lignin over polymeric sugars. Solid-state cultivation and subsequent simultaneous saccharification and fermentation for ethanol production were performed. Effects of moisture content (MC) and fungus inoculum on biomass degradation, ligninolytic enzyme, and ethanol production were evaluated. First, fungal pretreatment was performed with varied MC and inoculum levels and sampled every 20 days. The highest xylose yield observed was 15.6% for samples with 75% MC and 5 mL inoculum at fungal pretreatment of 40 days. The highest lignin degradation of 52% and highest ethanol yield of 31% (based on the glucan present in the raw switchgrass) were achieved for 80-day fungal-treated samples with 75% MC and 5 mL inoculum. Keywords: KLywords. Bioenergy, Fungal pretreatment, Oyster mushroom, Perennial grass.


2012 ◽  
Vol 112 ◽  
pp. 137-142 ◽  
Author(s):  
Ichiro Kamei ◽  
Yoshiyuki Hirota ◽  
Toshio Mori ◽  
Hirofumi Hirai ◽  
Sadatoshi Meguro ◽  
...  

Fermentation ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 21 ◽  
Author(s):  
Sakae Horisawa ◽  
Akie Inoue ◽  
Yuka Yamanaka

The cost of bioethanol production from lignocellulosic materials is relatively high because the additional processes of delignification and saccharification are required. Consolidated bioprocessing (CBP) simultaneously uses the multiple processes of delignification, saccharification, and fermentation in a single reactor and has the potential to solve the problem of cost. Some wood-degrading basidiomycetes have lignin- and cellulose-degrading abilities as well as ethanol fermentation ability. The white rot fungus Schizophyllum commune NBRC 4928 was selected as a strong fermenter from a previous study. The lignin-degrading fungus Bjerkandera adusta and polysaccharide-degrading fungus Fomitopsis palustris were respectively added to S. commune ethanol fermentations to help degrade lignocellulosic materials. Bjerkandera adusta produced more ligninase under aerobic conditions, so a switching aeration condition was adopted. The mixed culture of S. commune and B. adusta promoted direct ethanol production from cedar wood. Fomitopsis palustris produced enzymes that released glucose from both carboxymethylcellulose and microcrystalline cellulose. The mixed culture of S. commune and F. palustris did not enhance ethanol production from cedar. The combination of S. commune and cellulase significantly increased the rate of ethanol production. The results suggest that CBP for ethanol production from cellulosic material can be achieved by using multiple fungi in one reactor.


2012 ◽  
Vol 3 (1) ◽  
pp. 20-21
Author(s):  
A.Sangeetha A.Sangeetha ◽  
◽  
K.Thanigai K.Thanigai ◽  
Narasimhamurthy Narasimhamurthy ◽  
S.K.Nath S.K.Nath

2020 ◽  
Vol 93 (9) ◽  
pp. 289-292
Author(s):  
Yumi SHIMIZU ◽  
Shuma SATHO ◽  
Taro NAKAJIMA ◽  
Hiroaki KOUZAI ◽  
Kiminori SHIMIZU

2018 ◽  
Vol 69 (1) ◽  
pp. 38-44
Author(s):  
Nicoleta Mirela Marin ◽  
Olga Tiron ◽  
Luoana Florentina Pascu ◽  
Mihaela Costache ◽  
Mihai Nita Lazar ◽  
...  

This study investigates the synergistic effects of ion exchange and biodegradation methods to remove the Acid Blue 193 also called Gryfalan Navy Blue RL (GNB) dye from wastewater. Ion exchange studies were performed using a strongly basic anion exchange resin Amberlite IRA 400. The equilibrium was characterized by a kinetic and thermodynamic points of view, establishing that the sorption of the GNB dye was subject to the Freundlich isotherm model with R2 = 0.8710. Experimental results showed that the activated resin can removed up to 93.4% when the concentration of dye solution is 5.62�10-2 mM. The biodegradation of the GNB was induced by laccase, an enzyme isolated from white-rot fungus. It was also analyzed the role of pH and dye concentration on GNB biodegradation, so 5�10-2 mM dye had a maximum discoloration efficiency of 82.9% at pH of 4. The laccase showed a very fast and robust activity reaching in a few minutes a Km value of 2.2�10-1mM. In addition, increasing the GNB concentration up to 8�10-1 mM did not triggered a substrat inhibition effect on the laccase activity. Overall, in this study we proposed a mixt physicochemical and biological approach to enhance the GNB removal and biodegradability from the wastewaters and subsequently the environment.


1991 ◽  
Vol 24 (3-4) ◽  
pp. 189-198 ◽  
Author(s):  
V. P. Lankinen ◽  
M. M. Inkeröinen ◽  
J. Pellinen ◽  
A. I. Hatakka

Decrease of adsorbable organic chlorine (AOX) is becoming the most important criterion for the efficiency of pulp mill effluent treatment in the 1990s. Two methods, designated MYCOR and MYCOPOR which utilize the white-rot fungus Phanerochaete chrysosporium have earlier been developed for the color removal of pulp mill effluents, but the processes have also a capacity to decrease the amount of chlorinated organic compounds. Lignin peroxidases (ligninases) produced by P. chrvsosporium may dechlorinate chlorinated phenols. In this work possibilities to use selected white-rot fungi in the treatment of E1-stage bleach plant effluent were studied. Phlebia radiata. Phanerochaete chrvsosporium and Merulius (Phlebia) tremellosus were compared in shake flasks for their ability to produce laccase, lignin peroxidase(s) and manganese-dependent peroxidase(s) and to remove color from a medium containing effluent. Softwood bleaching effluents were treated by carrier-immobilized P. radiata in 2 1 bioreactors and a 10 1 BiostatR -fermentor. Dechlorination was followed using Cl ion and AOX determinations. All fungi removed the color of the effluent. In P. radiata cultivations AOX decrease was ca. 4 mg l−1 in one day. Apparent lignin peroxidase activities as determined by veratryl alcohol oxidation method were negligible or zero in a medium with AOX content of ca. 60 mg l−1, prepared using about 20 % (v/v) of softwood effluent. However, the purification of extracellular enzymes implied that large amounts of lignin peroxidases were present in the medium and, after the purification, in active form. Enzyme proteins were separated using anion exchange chromatography, and they were further characterized by electrophoresis (SDS-PAGE) to reveal the kind of enzymes that were present during AOX decrease and color removal. The most characteristic lignin peroxidase isoenzymes in effluent media were LiP2 and LiP3.


Sign in / Sign up

Export Citation Format

Share Document