Vertical Wedge Drop Experiments as a Model for Slamming

2021 ◽  
pp. 1-18
Author(s):  
Zhongshu Ren ◽  
Mohammad Javad Javaherian ◽  
Christine Gilbert

A deeper comprehension of hydrodynamic slamming can be achieved by revisiting the wedge water entry problem using flexible structures. In this work, two wedge models that are identical, with the exception of different bottom thicknesses, are vertically dropped into calm water. Pressure, full-field out-of-plane deflection, strain, vertical acceleration, and vertical position are measured. Full-field deflections and strains are measured using stereoscopic-digital image correlation (S-DIC) and strain gauges. A nondimensional number, R, quantifying the relative stiffness of the structure with respect to the fluid load is revisited. An experimental parametric study on the effect of R on the nondimensional hydrodynamic pressure and the maximum strain is presented. It was found there is a sharp change in the trend of pressure and strain when R passes through a critical value. It was also discovered that the structural deformation causes a delay in the peak pressure arrival time and a reduction in the peak pressure magnitude during the wedge water entry. Introduction When high-speed planing craft operating in waves becomes airborne and reenters the water surface, a substantial impact or “slam” between the vessel bottom and the water surface will occur (Faltinsen 2005; Lloyd 1989). The bottom slamming events occur frequently and may injure the passengers, compromise the equipment onboard, or even damage the structure. Slamming is a major cause of speed reduction in small craft where slamming loads are important. Current design criteria are primarily based on empirical measurements with little regard for the fluid–structure interaction (FSI) physics of the slamming phenomenon. This study offers a first step toward better understanding of FSI in slamming for optimal structural design in the future. Since the cross sections of most surface effect ships may be approximated by a V-shaped wedge, the slamming characteristics of these sections may be examined by dropping a wedge model into water (Faltinsen 2005; Lloyd 1989). Studying the wedge water entry problem is also helpful in shedding light on the wet deck slamming of catamaran, sloshing under the chamfered roof of a partially filled tank (Faltinsen 2000), seaplane landing (Wagner 1932), water landing of spacecraft and solid rocket boosters, water landing/ditching of aircraft (Abrate 2013), and animal diving behavior (Chang et al. 2016).

2021 ◽  
Vol 11 (12) ◽  
pp. 5430
Author(s):  
Paolo Neri ◽  
Alessandro Paoli ◽  
Ciro Santus

Vibration measurements of turbomachinery components are of utmost importance to characterize the dynamic behavior of rotating machines, thus preventing undesired operating conditions. Local techniques such as strain gauges or laser Doppler vibrometers are usually adopted to collect vibration data. However, these approaches provide single-point and generally 1D measurements. The present work proposes an optical technique, which uses two low-speed cameras, a multimedia projector, and three-dimensional digital image correlation (3D-DIC) to provide full-field measurements of a bladed disk undergoing harmonic response analysis (i.e., pure sinusoidal excitation) in the kHz range. The proposed approach exploits a downsampling strategy to overcome the limitations introduced by low-speed cameras. The developed experimental setup was used to measure the response of a bladed disk subjected to an excitation frequency above 6 kHz, providing a deep insight in the deformed shapes, in terms of amplitude and phase distributions, which could not be feasible with single-point sensors. Results demonstrated the system’s effectiveness in measuring amplitudes of few microns, also evidencing blade mistuning effects. A deeper insight into the deformed shape analysis was provided by considering the phase maps on the entire blisk geometry, and phase variation lines were observed on the blades for high excitation frequency.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1602
Author(s):  
Ángel Molina-Viedma ◽  
Elías López-Alba ◽  
Luis Felipe-Sesé ◽  
Francisco Díaz

Experimental characterization and validation of skin components in aircraft entails multiple evaluations (structural, aerodynamic, acoustic, etc.) and expensive campaigns. They require different rigs and equipment to perform the necessary tests. Two of the main dynamic characterizations include the energy absorption under impact forcing and the identification of modal parameters through the vibration response under any broadband excitation, which also includes impacts. This work exploits the response of a stiffened aircraft composite panel submitted to a multi-impact excitation, which is intended for impact and energy absorption analysis. Based on the high stiffness of composite materials, the study worked under the assumption that the global response to the multi-impact excitation is linear with small strains, neglecting the nonlinear behavior produced by local damage generation. Then, modal identification could be performed. The vibration after the impact was measured by high-speed 3D digital image correlation and employed for full-field operational modal analysis. Multiple modes were characterized in a wide spectrum, exploiting the advantages of the full-field noninvasive techniques. These results described a consistent modal behavior of the panel along with good indicators of mode separation given by the auto modal assurance criterion (Auto-MAC). Hence, it illustrates the possibility of performing these dynamic characterizations in a single test, offering additional information while reducing time and investment during the validation of these structures.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1154
Author(s):  
Dario De Domenico ◽  
Antonino Quattrocchi ◽  
Damiano Alizzio ◽  
Roberto Montanini ◽  
Santi Urso ◽  
...  

Digital Image Correlation (DIC) provides measurements without disturbing the specimen, which is a major advantage over contact methods. Additionally, DIC techniques provide full-field maps of response quantities like strains and displacements, unlike traditional methods that are limited to a local investigation. In this work, an experimental application of DIC is presented to investigate a problem of relevant interest in the civil engineering field, namely the interface behavior between externally bonded fabric reinforced cementitious mortar (FRCM) sheets and concrete substrate. This represents a widespread strengthening technique of existing reinforced concrete structures, but its effectiveness is strongly related to the bond behavior between composite fabric and underlying concrete. To investigate this phenomenon, a set of notched concrete beams are realized, reinforced with FRCM sheets on the bottom face, subsequently cured in different environmental conditions (humidity and temperature) and finally tested up to failure under three-point bending. Mechanical tests are carried out vis-à-vis DIC measurements using two distinct cameras simultaneously, one focused on the concrete front face and another focused on the FRCM-concrete interface. This experimental setup makes it possible to interpret the mechanical behavior and failure mode of the specimens not only from a traditional macroscopic viewpoint but also under a local perspective concerning the evolution of the strain distribution at the FRCM-concrete interface obtained by DIC in the pre- and postcracking phase.


2021 ◽  
Vol 11 (2) ◽  
pp. 879
Author(s):  
Eleni Tsangouri ◽  
Hasan Ismail ◽  
Matthias De Munck ◽  
Dimitrios G. Aggelis ◽  
Tine Tysmans

Internal interfacial debonding (IID) phenomena on sandwich façade insulated panels are detected and tracked by acoustic emission (AE). The panels are made of a thin and lightweight cementitious composite skin. In the lab, the panels are tested under incremental bending simulating service loads (i.e., wind). Local (up to 150 mm wide) skin-core detachments are reported in the early loading stage (at 5% of ultimate load) and are extensively investigated in this study, since IID can detrimentally affect the long-term durability of the structural element. A sudden rise in the AE hits rate and a shift in the wave features (i.e., absolute energy, amplitude, rise time) trends indicate the debonding onset. AE source localization, validated by digital image correlation (DIC) principal strains and out-of-plane full-field displacement mapping, proves that early debonding occurs instantly and leads to the onset of cracks in the cementitious skin. At higher load levels, cracking is accompanied by local debonding phenomena, as proven by RA value increases and average frequency drops, a result that extends the state-of-the-art in the fracture assessment of concrete structures (Rilem Technical Committee 212-ACD). Point (LVDT) and full-field (AE/DIC) measurements highlight the need for a continuous and full-field monitoring methodology in order to pinpoint the debonded zones, with the DIC technique accurately reporting surface phenomena while AE offers in-volume damage tracking.


Author(s):  
Stefan Hartmann ◽  
Rose Rogin Gilbert

AbstractIn this article, we follow a thorough matrix presentation of material parameter identification using a least-square approach, where the model is given by non-linear finite elements, and the experimental data is provided by both force data as well as full-field strain measurement data based on digital image correlation. First, the rigorous concept of semi-discretization for the direct problem is chosen, where—in the first step—the spatial discretization yields a large system of differential-algebraic equation (DAE-system). This is solved using a time-adaptive, high-order, singly diagonally-implicit Runge–Kutta method. Second, to study the fully analytical versus fully numerical determination of the sensitivities, required in a gradient-based optimization scheme, the force determination using the Lagrange-multiplier method and the strain computation must be provided explicitly. The consideration of the strains is necessary to circumvent the influence of rigid body motions occurring in the experimental data. This is done by applying an external strain determination tool which is based on the nodal displacements of the finite element program. Third, we apply the concept of local identifiability on the entire parameter identification procedure and show its influence on the choice of the parameters of the rate-type constitutive model. As a test example, a finite strain viscoelasticity model and biaxial tensile tests applied to a rubber-like material are chosen.


2011 ◽  
Vol 83 ◽  
pp. 54-59 ◽  
Author(s):  
Rui Zhang ◽  
Ling Feng He ◽  
Chang Rong Li

Applications of the digital image correlation method (DIC) for the determination of the opening mode stress intensity factor (SIF) is investigated using an edge cracked aluminum plate in this paper. Standard compact tension test specimen was tested under tensile loading and the full-field displacement fields of the test sample were recorded using DIC. The SIF associated with unavoidable rigid-body displacement translation were calculated simultaneously from the experimental data by fitting the theoretical displacement field using the method of least-squares. Selection of displacement and convergence values is discussed. For validation, the SIF thus determined is compared with theoretical results, confirming the effectiveness and accuracy of the proposed technique. Therefore it reveals that the DIC is a practical and effective tool for full-field deformation and SIF measurement.


Sign in / Sign up

Export Citation Format

Share Document