Design Support Tool for Prediction of Welding Distortion in Multiply Stiffened Plate Structures: Experimental and Computational Investigation

2005 ◽  
Vol 21 (04) ◽  
pp. 219-234
Author(s):  
Duncan Camilleri ◽  
Tugrul Comlekci ◽  
Thomas G. F. Gray

Many industries, such as shipbuilding, concerned with the fabrication of fusionwelded plate structures, face increasing challenges to produce lightweight structures. This design requirement is commonly met by using thin-plate, multiply stiffened, welded structures, but severe difficulties and high rectification costs are frequently incurred, related to the evolution of out-of-plane deformations. The overall scope of this study is to improve the applicability of computational prediction of distortion by providing simple and adaptable methodologies, which can be readily validated through experience of application in the industrial context. These methods are designed to be computationally economic and robust, and they are also generic with respect to material properties, welding processes, and thickness. The aim is to provide design engineers with the tools to explore alternative structural and process parameters and hence to find out if the outcomes will be acceptable, prior to embarking on manufacturing operations typical of large-scale welded structures. The validity of the simulations was investigated via full-scale tests where several filletwelded 100 mm × 6 mmstiffeners were attached to 4 m × 1.5 m × 5 mmthick plates, according to different sequences. The computational models were used to optimize the welding scheme with respect to minimum out-of-plane deformation and welding sequence.

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2700 ◽  
Author(s):  
Jiamin Sun ◽  
Jonas Hensel ◽  
Thomas Nitschke-Pagel ◽  
Klaus Dilger

From the viewpoint of mechanics, weld cracking tends to occur if the induced tensile stress surpasses a certain value for the particular materials and the welding processes. Welding residual stresses (WRS) can be profoundly affected by the restraint conditions of the welded structures. For estimating the tendency of weld cracking, the small-scale H-type slit joints have been widely used for cracking tests. However, it is still hard to decide whether the real large-scale component can also be welded without cracking even though the tested weld cracking specimens on the laboratory scale can be welded without cracking. In this study, the intensity of restraint which quantitatively indicates how much a joint is restrained is used. The influence of restraint condition (intensity of restraint) on WRS is systematically investigated using both the numerical simulation and the experimental method. The achievement obtained in the current work is very beneficial to design effective H-type self-restrained cracking test specimens for evaluating the sensitivity of the material and the welding procedures for weld cracking in the real large-scale components.


Author(s):  
D Camilleri ◽  
P Mollicone ◽  
T G F Gray

Multiply-stiffened, thin plate, welded fabrications are used in a wide variety of transport fields, however the resulting out-of-plane distortion associated with welding exacts a severe design penalty. Depending on the information required, the size of the structure under investigation and the computer power at hand, three computational strategies may be considered to predict welding distortion. If prediction of the localized residual stresses from welding is of major importance, then a full transient, uncoupled thermo-elastoplastic analysis is preferred. This method is not readily applicable to predict welding distortions in industrial-scale welded structures. More computationally efficient models are required and two other models are suggested in the current study. A series of experimental tests of a realistic nature were performed to validate the proposed computational strategies. Computational and experimental study of butt and fillet welding of small and industrial size fabrications is considered.


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 141 ◽  
Author(s):  
Hui Huang ◽  
Xianqing Yin ◽  
Zhili Feng ◽  
Ninshu Ma

Transient distortion of thin plate in the welding process usually has a complicated mode and large magnitude. Quantitative measurement and prediction of full-field distortion are challenging and rarely reported up to now. In this study, the out-of-plane distortion of a thin plate during the Tungsten Inert Gas (TIG) welding process was measured using the digital image correlation (DIC) method. A simulation model based on thermal elastic–plastic finite element method (FEM) and DIC measured geometric imperfection were developed for accurate prediction of the transient welding distortion. The numerical results and experimental data agreed very well in both out-of-plane deformation modes and magnitudes of the plate at different stages of welding. The maximum out-of-plane distortion was larger than 4 mm during welding which can cause instability of arc length and heat input. The distance change between welding torch and plate surface was investigated under different initial deflections of the plate before welding. The plate with flat geometry shows the minimum transient and final gap change. In addition, the relationship between heat input and welding distortion was clarified through a series of numerical analyses. Optimization of welding heat input can be performed based on numerical results to avoid excessive welding distortion.


Author(s):  
Bai-Qiao Chen ◽  
Marzieh Hashemzadeh ◽  
Yordan Garbatov ◽  
C. Guedes Soares

The objective of this work is to present and review the recent developments in the experimental and numerical assessment and simulation techniques on the welding induced distortions and residual stresses. The temperature distribution, welding induced distortion and residual stresses in thin walled welded structures, originating from different experimental tests are reviewed and discussed. Different mathematical models and their numerical applications in representing the heat source are analysed and their advantages and drawbacks are discussed. Thermal stress analyses employing the three-dimensional nonlinear thermo-elasto-plastic approaches and finite element simulations with inherent deformation applicable to large-scale and complex welded structures are also revised and discussed. Discussions on the material properties of the base metal, heat affected zone (HAZ) and weld metal, the effect of the welding sequence, and the pattern of residual stress distribution presented are given a special attention.


2021 ◽  
Vol 100 (11) ◽  
pp. 359-370
Author(s):  
HUI HUANG ◽  
◽  
JIAN CHEN ◽  
ZHILI FENG ◽  
HUI-PING WANG ◽  
...  

The computational design of industrially relevant welded structures is extremely time consuming due to coupled physics and high nonlinearity. Previously, most welding distortion and residual stress simulations have been limited to small coupons and reduced order (from three-dimensional [3D] to two-dimensional [2D]), or inherent strain approximations were used for large structures. In this current study, an explicit finite element code based on a graphics processing unit was utilized to perform 3D transient thermomechanical simulation of structural components during welding. Laser brazing of aluminum alloy panels as representative of automotive manufacturing scenarios was simulated to predict out-of-plane distortion under different clamping conditions. The predicted deformation pattern and magnitude were validated by laser scanning data of physical assemblies. In addition, the code was used to investigate residual stresses developed during multipass arc welding of a nuclear industry pressurizer surge nozzle and subsequent welding repair where a 3D simulation was necessary. Taking the experimental data as reference, the 3D model predicted better residual stress distribution than a typical 2D asymmetrical model. Stress evolution in welding repair was also presented and discussed in this study. The efficient numerical model made it feasible to use integrated computational welding engineering to simulate welding processes for large-scale structures.


2017 ◽  
Vol 24 (20) ◽  
pp. 4825-4838 ◽  
Author(s):  
Xuewen Yin ◽  
Wenwei Wu ◽  
Kuikui Zhong ◽  
Hui Li

A dynamic stiffness method is presented for the vibrations of plate structures that are reinforced by eccentric stiffeners. The model incorporates both out-of-plane and in-plane deformations of the plates and the stiffeners. Based on the relationship between the forces and displacements along the common edges of the plate or beam elements, the dynamic stiffness formulae for the plate and the beam elements are derived, respectively. The globally assembled dynamic stiffness matrix is then obtained using the finite element method so that the dynamics of built-up stiffened plates can be readily addressed by using the present method. Compared to the conventional finite element model, the dynamic stiffness model can provide very accurate solutions using only one element over each uniform plate and beam member, regardless of its geometry.


2010 ◽  
Vol 26 (02) ◽  
pp. 117-134 ◽  
Author(s):  
D. Camilleri ◽  
T.G.F. Gray ◽  
N. McPherson

The aim of this study was to investigate the influence of different tack welding fabrication procedures on the final deformations of seam welded plate structures. In this study the length of the tacks, number of tacks, and position of tacks with respect to the final seam weld are altered, and their sensitivity with respect to out-of-plane deformation is established. A parametric study of these three different procedural variations is performed via finite element models to identify which fabrication procedures would lead to minimal out-of-plane distortion.


Author(s):  
Jiangchao Wang ◽  
Bin Yi

Welding distortion of pozidriv-type welded structure with rectangular pipes by 20 welding passes was examined with experimental and computational approaches, and mitigation techniques were also investigated for precision fabrication. Welding experiment to fabricate pozidriv type welded structure was conducted beforehand, and out-of-plane welding distortion was measured with contact type displacement sensor. Effective thermal elastic plastic finite element computation with iterative substructure method and parallel computation was developed, and then employed to examine the thermal-mechanical response during the entire welding process and predict the residual out-of-plane welding distortion. Good agreement between computed results and measurement data was observed with comparison. The influences of welding sequence and clamping constraint with tack welding on welding distortion were considered, which were also practiced for out-of-plane welding distortion mitigation. Both experiment and finite element computation show that out-of-plane welding distortion with welding sequence optimization and clamping constraint can be significantly reduced with about 38% and 56% magnitude of original welding distortion, respectively, while their mechanisms were also clarified by means of stiffness variation of solving welded structure.


Sign in / Sign up

Export Citation Format

Share Document