Mean-Flow Measurements in the Boundary Layer and Wake and Wave Field of a Series 60 CB = 0.6 Ship Model—Part 2: Scale Effects on Near-Field Wave Patterns and Comparisons with Inviscid Theory

1993 ◽  
Vol 37 (01) ◽  
pp. 16-24
Author(s):  
J. Longo ◽  
F. Stern ◽  
Y. Toda

Part 2 of this two-part paper presents additional results from a towing-tank experiment conducted in order to explicate the influence of wavemaking by a surface-piercing body on its boundary-layer and wake and provide detailed documentation of the complete flow field appropriate for validating computational methods. In Part 1 (Journal of Ship Research, Dec. 1992), wave profile, local and global wave-elevation, and mean-velocity and pressure field measurements for Froude numbers 0.16 and 0.316 for a 3.048 m Series 60 CB = 0.6 hull form are presented and discussed to point out the essential differences between the flows at low and high Froude number and to assess the nature of the interaction between wavemaking and the boundary layer and wake. In Part 2, scale effects on the near-field wave patterns are examined through wave profile and local and global wave-elevation measurements for 1.829 and 3.048 m models and Froude numbers 0.316, 0.3, and 0.25. The bow-wave amplitude and divergence angle are larger and the stern waves smaller for the smaller model. The latter scale effect is well known, but the former one is a new and unexpected result. Also, comparisons are made between the experimental results and those from a wavy inviscid-flow method, which provides an evaluation of the capabilities of the computational method. Although the computations predict the gross features of the wave system and velocity and pressure fields, they do not simulate the complex details of either the wave system or the flow field, especially close to the hull and wake centerplane.

1992 ◽  
Vol 36 (04) ◽  
pp. 360-377
Author(s):  
Y. Toda ◽  
F. Stern ◽  
J. Longo

Part 1 of this two-part paper presents results from a towing-tank experiment conducted in order to explicate the influence of wavemaking by a surface-piercing body on its boundary layer and wake and provide detailed documentation of the complete flow field appropriate for validating computational methods. Mean-velocity and pressure field measurements were performed for Froude numbers 0.16 and 0.316 for a 3.048 m Series 60 CB = 0.6 hull form at numerous stations from the bow to the stern and into the near wake. For Froude number = 0.316, free-surface effects are very significant, whereas for Froude number = 0.16, they are negligible, except near the bow, such that comparison of the results enables the identification of the salient features of the wave-induced effects. Wave profiles and local and global elevations were also measured. In addition, resistance tests were conducted. The experimental equipment and procedures are described and the results are discussed to point out the essential differences between the flows at low and high Froude number. On the forebody, the differences are primarily in the outer (inviscid) flow, except at the bow, whereas on the afterbody and in the near wake, both the inner (viscous) and outer flows are altered. The results are discussed to assess the nature of the interaction between wavemaking and the boundary layer and wake. Most of the interaction can be explicated as a result of the wave elevations, wave-induced pressure gradients, and the displacement effects of the boundary layer. Part 2 concerns scale effects on near-field wave patterns and comparisons between the experimental results and inviscid theory.


2011 ◽  
Vol 689 ◽  
pp. 97-128 ◽  
Author(s):  
K. Gudmundsson ◽  
Tim Colonius

AbstractPrevious work has shown that aspects of the evolution of large-scale structures, particularly in forced and transitional mixing layers and jets, can be described by linear and nonlinear stability theories. However, questions persist as to the choice of the basic (steady) flow field to perturb, and the extent to which disturbances in natural (unforced), initially turbulent jets may be modelled with the theory. For unforced jets, identification is made difficult by the lack of a phase reference that would permit a portion of the signal associated with the instability wave to be isolated from other, uncorrelated fluctuations. In this paper, we investigate the extent to which pressure and velocity fluctuations in subsonic, turbulent round jets can be described aslinearperturbations to the mean flow field. The disturbances are expanded about the experimentally measured jet mean flow field, and evolved using linear parabolized stability equations (PSE) that account, in an approximate way, for the weakly non-parallel jet mean flow field. We utilize data from an extensive microphone array that measures pressure fluctuations just outside the jet shear layer to show that, up to an unknown initial disturbance spectrum, the phase, wavelength, and amplitude envelope of convecting wavepackets agree well with PSE solutions at frequencies and azimuthal wavenumbers that can be accurately measured with the array. We next apply the proper orthogonal decomposition to near-field velocity fluctuations measured with particle image velocimetry, and show that the structure of the most energetic modes is also similar to eigenfunctions from the linear theory. Importantly, the amplitudes of the modes inferred from the velocity fluctuations are in reasonable agreement with those identified from the microphone array. The results therefore suggest that, to predict, with reasonable accuracy, the evolution of the largest-scale structures that comprise the most energetic portion of the turbulent spectrum of natural jets, nonlinear effects need only be indirectly accounted for by considering perturbations to the mean turbulent flow field, while neglecting any non-zero frequency disturbance interactions.


1979 ◽  
Vol 101 (3) ◽  
pp. 373-375
Author(s):  
M. L. Agarwal ◽  
P. K. Pande ◽  
Rajendra Prakash

The mean flow past a fence submerged in a turbulent boundary layer is numerically simulated. The governing equations have been simplified by neglecting the convective effects of turbulence and solved numerically using experimental boundary conditions. The information obtained includes the shape and size of the upstream and downstream separation bubbles and the streamline pattern in the entire flow field. General agreement between the simulated and the experimental flow field was found.


2020 ◽  
Vol 5 (10) ◽  
pp. 1199-1203
Author(s):  
Md. Mosharrof Hossain ◽  
Muhammed Hasnain Kabir Nayeem ◽  
Dr. Md Abu Taher Ali

In this investigation experiment was carried out in 80 mm diameter swirling pipe jet, where swirl was generated by attaching wedge-shaped helixes in the pipe. All measurements were taken at Re 5.3e4. In the plain pipe jet the potential core was found to exist up to x/D=5 but in the swirling jet there was no existence of potential core. The mean velocity profiles were found to be influenced by the presence of wedge-shaped helixes in the pipe. The velocity profiles indicated the presence of sinusoidal flow field in the radial direction existed only in the near field of the jet. This flow field died out after x/D=3 and the existence of jet flow diminished after x/D=5.


2021 ◽  
Vol 62 (9) ◽  
Author(s):  
Jason Appelbaum ◽  
Duncan Ohno ◽  
Ulrich Rist ◽  
Christoph Wenzel

AbstractUnsteady, 3D particle tracking velocimetry (PTV) data are applied as an inlet boundary condition in a direct numerical simulation (DNS). The considered flow case is a zero pressure gradient (ZPG) turbulent boundary layer (TBL) flow over a flat plate. The study investigates the agreement between the experimentally measured flow field and its simulated counterpart with a hybrid 3D inlet region. The DNS field inherits a diminishing contribution from the experimental field within the 3D inlet region, after which it is free to spatially evolve. Since the measurement does not necessarily provide a spectrally complete description of the turbulent field, the spectral recovery of the flow field is analyzed as the TBL evolves. The study summarizes the pre-processing methodology used to bring the experimental data into a form usable by the DNS as well as the numerical method used for simulation. Spectral and mean flow analysis of the DNS results show that turbulent structures with a characteristic length on the order of one average tracer particle nearest neighbor radius $${\bar{r}}_{\text {NN}}$$ r ¯ NN or greater are well reproduced and stay correlated to the experimental field downstream of the hybrid inlet. For turbulent scales smaller than $${\bar{r}}_{\text {NN}}$$ r ¯ NN , where experimental data are sparse, a relatively quick redevelopment of previously unresolved turbulent energy is seen. The results of the study indicate applicability of the approach to future DNS studies in which specific upstream or far field boundary conditions (BCs) are required and may provide the utility of decreasing high initialization costs associated with conventional inlet BCs. Graphic abstract


1982 ◽  
Vol 119 ◽  
pp. 121-153 ◽  
Author(s):  
Udo R. Müller

An experimental study of a steady, incompressible, three-dimensional turbulent boundary layer approaching separation is reported. The flow field external to the boundary layer was deflected laterally by turning vanes so that streamwise flow deceleration occurred simultaneous with cross-flow acceleration. At 21 stations profiles of the mean-velocity components and of the six Reynolds stresses were measured with single- and X-hot-wire probes, which were rotatable around their longitudinal axes. The calibration of the hot wires with respect to magnitude and direction of the velocity vector as well as the method of evaluating the Reynolds stresses from the measured data are described in a separate paper (Müller 1982, hereinafter referred to as II). At each measuring station the wall shear stress was inferred from a Preston-tube measurement as well as from a Clauser chart. With the measured profiles of the mean velocities and of the Reynolds stresses several assumptions used for turbulence modelling were checked for their validity in this flow. For example, eddy viscosities for both tangential directions and the corresponding mixing lengths as well as the ratio of resultant turbulent shear stress to turbulent kinetic energy were derived from the data.


Author(s):  
BT Kannan ◽  
NR Panchapakesan

Turbulent jet flows with multiple nozzle inlets are investigated computationally using OpenFOAM. The configurations vary from single to five axisymmetric nozzles. First-order closure is used with Reynolds-averaged Navier–Stokes equations. Computed results are compared with the available experimental data. The effect of nozzle configuration on the jet flow field is discussed with predicted mean flow and turbulent flow data. Near-field of multiple jets shows the nonlinear behavior. Multiple jets show better performance in the near-field based on entrainment, secondary flows, and area-averaged turbulent kinetic energy. The downstream evolution of the multiple jets differs for configurations with and without central jet. The shape parameter confirms the evolution of the multiple jets towards an axisymmetric jet.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Kun Zhao ◽  
Patrick N. Okolo ◽  
Yong Wang ◽  
John Kennedy ◽  
Gareth J. Bennett

This study reports an experimental investigation of two planar jets in a crossflow in a tandem arrangement. Tests were conducted in an open-jet wind tunnel facility using two-dimensional (2D)-particle imaging velocimetry (PIV) measurement. Using the terminology in the dual jets in a quiescent ambient, the mean flow field of the crossflow arrangement was divided into a converging region, a merging region, and a combined region. An approach to determining the range of these three regions was proposed based on the mean characteristics of horizontal velocity profiles of the flow field, validated by the experimental data. The momentum-dominated near field (MDNF) for the rear jet in the dual-jet configuration was recognized using the horizontal offset of mean jet trajectory, which accordingly gives a quantitative definition of the MDNF range. Discussions were made on the effects of different parameters on the three regions and MDNF. Finally, snapshot proper orthogonal decomposition (POD) analysis was conducted, characterizing the coherent structures of the flow field, particularly the large-scale vortices. It was observed that the large-scale vortices mainly occur in the shear layers of the jets and their occurrence is affected by the parameters of the jets. In addition, compared with the single-jet configuration, the introduction of the front jet was found to contribute to the occurrence and development of the large-scale vortices.


Sign in / Sign up

Export Citation Format

Share Document