Free-Surface Effects of Yacht Appendages

2002 ◽  
Vol 46 (01) ◽  
pp. 31-38
Author(s):  
P.S. Jackson ◽  
G. Marr

This paper uses a panel method based on Kelvin sources and doublets to explore the interactions between the free surface and yacht hull appendages. The emphasis is on understanding the physical origins of the kinds of effects observed in tank tests and in trying to confirm or improve the methods used to predict these effects. Three kinds of interaction are explored, the first being the effect of Froude number, heel and leeway on sideforce, the second being the subsequent effects of residuary resistance due to appendages, and the third being the change in wave drag associated with the presence of a ballast bulb at zero heel and leeway.

2000 ◽  
Vol 406 ◽  
pp. 337-346 ◽  
Author(s):  
L. ENGEVIK

The instabilities of a free surface shear flow are considered, with special emphasis on the shear flow with the velocity profile U* = U*0sech2 (by*). This velocity profile, which is found to model very well the shear flow in the wake of a hydrofoil, has been focused on in previous studies, for instance by Dimas & Triantyfallou who made a purely numerical investigation of this problem, and by Longuet-Higgins who simplified the problem by approximating the velocity profile with a piecewise-linear profile to make it amenable to an analytical treatment. However, none has so far recognized that this problem in fact has a very simple solution which can be found analytically; that is, the stability boundaries, i.e. the boundaries between the stable and the unstable regions in the wavenumber (k)–Froude number (F)-plane, are given by simple algebraic equations in k and F. This applies also when surface tension is included. With no surface tension present there exist two distinct regimes of unstable waves for all values of the Froude number F > 0. If 0 < F [Lt ] 1, then one of the regimes is given by 0 < k < (1 − F2/6), the other by F−2 < k < 9F−2, which is a very extended region on the k-axis. When F [Gt ] 1 there is one small unstable region close to k = 0, i.e. 0 < k < 9/(4F2), the other unstable region being (3/2)1/2F−1 < k < 2 + 27/(8F2). When surface tension is included there may be one, two or even three distinct regimes of unstable modes depending on the value of the Froude number. For small F there is only one instability region, for intermediate values of F there are two regimes of unstable modes, and when F is large enough there are three distinct instability regions.


2018 ◽  
Vol 146 ◽  
pp. 135-148 ◽  
Author(s):  
Magdalena M. Miszczyk ◽  
Henryk Paul ◽  
Julian H. Driver

2011 ◽  
Vol 23 (7) ◽  
pp. 072101 ◽  
Author(s):  
Osama Ogilat ◽  
Scott W. McCue ◽  
Ian W. Turner ◽  
John A. Belward ◽  
Benjamin J. Binder

1997 ◽  
Author(s):  
Bruce S. Rosen ◽  
Joseph P. Laiosa

The SPLASH free-surface potential flow panel code computer program is presented. The 3D flow theory and its numerical implementation are discussed. Some more conventional applications are reviewed, for steady flow past solid bodies, and for classical linearized free-surface flow. New free-surface capabilities are also described, notably, steady nonlinear solutions, and novel unsteady partially­nonlinear solutions in the frequency domain. The inviscid flow method treats both free-surface waves and lifting surfaces. The calculations yield predictions for complex interactions at heel and yaw such as wave drag due to lift, the effect of the free­surface on lift and lift-induced drag, and unsteady motions and forces in oblique or following seas. These are in addition to the usual predictions for the simpler effects considered separately, for example double-body lift and induced drag, and upright steady wave resistance or added resistance in head seas. For prediction of total resistance, the use of computed variable wetted areas and wetted lengths in a standard semi-empirical, handbook-type "viscous stripping" algorithm provides a more accurate estimation of viscous drag than is possible otherwise. Results from a variety of IACC and IMS yacht design studies, including comparisons with experimental data, support the conclusion that the free­surface panel code can be used for reliable and accurate prediction of sailboat performance.


1988 ◽  
Vol 32 (02) ◽  
pp. 83-91
Author(s):  
X. M. Wang ◽  
M. L. Spaulding

A two-dimensional potential flow model is formulated to predict the wave field and forces generated by a sere!submerged body in forced heaving motion. The potential flow problem is solved on a boundary fitted coordinate system that deforms in response to the motion of the free surface and the heaving body. The full nonlinear kinematic and dynamic boundary conditions are used at the free surface. The governing equations and associated boundary conditions are solved by a second-order finite-difference technique based on the modified Euler method for the time domain and a successive overrelaxation (SOR) procedure for the spatial domain. A series of sensitivity studies of grid size and resolution, time step, free surface and body grid redistribution schemes, convergence criteria, and free surface body boundary condition specification was performed to investigate the computational characteristics of the model. The model was applied to predict the forces generated by the forced oscillation of a U-shaped cylinder. Numerical model predictions are generally in good agreement with the available second-order theories for the first-order pressure and force coefficients, but clearly show that the third-order terms are larger than the second-order terms when nonlinearity becomes important in the dimensionless frequency range 1≤ Fr≤ 2. The model results are in good agreement with the available experimental data and confirm the importance of the third order terms.


2019 ◽  
Vol 58 (4) ◽  
pp. 582-593
Author(s):  
Recep Kahraman ◽  
Matthew Riella ◽  
Gavin R. Tabor ◽  
Mohsen Ebrahimi ◽  
Slobodan Djordjević ◽  
...  

Author(s):  
I. L. Collings

AbstractSolutions are found to two cusp-like free-surface flow problems involving the steady motion of an ideal fluid under the infinite-Froude-number approximation. The flow in each case is due to a submerged line source or sink, in the presence of a solid horizontal base.


Sign in / Sign up

Export Citation Format

Share Document