An Oily-Water Separator System

1974 ◽  
Vol 11 (01) ◽  
pp. 61-65
Author(s):  
Daniel C. Garber

This paper will discuss a unique (patent applied for) oily-water separation system for shipboard use. One pilot plant has already been placed on board an 80,000-ton tanker, the SS America Sun. In general, the system processes any oily-water mixture through its various components to effect essentially the complete separation of the oil and water using only physical processes and without any recourse to heat or chemicals.

2018 ◽  
Vol 72 (5) ◽  
pp. 253-264
Author(s):  
Dunja Sokolovic ◽  
Milica Hadnadjev-Kostic ◽  
Arpad Kiralj ◽  
Radmila Secerov-Sokolovic

Bed coalescers are compact, easy to install, automate, and maintain with the ability to achieve high separation efficiencies. They have been increasingly applied in the industry even though their design often requires pilot plant experiments. In this paper, a new wetting property of polymer fibers regarding polar mineral oils was established. This property can be important for selection of filter media for liquid-liquid separation in many industrial applications. Medical oil was selected as the new reference liquid that does not wet the investigated polymers. The lipophilic/lyophobic ratio (LLR) reached values ranging from 3.28 to 18.81 and increased with the increase of the mineral oil polarity measured by the oil neutralization number. The LLR values were in an excellent agreement with the results obtained from the separation efficiency of a steady-state bed coalescer. Thus, simple, fast and inexpensive experiments can replace pilot plant or at least laboratory testing aiming at selecting a polymer for oil separation from wastewater.


1973 ◽  
Vol 1973 (1) ◽  
pp. 403-408 ◽  
Author(s):  
Stanley M. Finger ◽  
T. S. Yu

ABSTRACT The physical separation process of coalescence has been studied analytically under controlled conditions in regard to the separation of oil from oily water mixtures. Variations in coalescer performance were studied as a function of the oily water feed to a three stage prototype separation system of which coalescence was the final stage. The data were analyzed statistically and it was shown that increasing suspended solids concentration, increasing oil viscosity, and increasing oil concentration decreased coalescer element lifetime, however, above a certain level increasing oil concentration had no effect. Variations in the total flow rate in the range of one to four gallons per minute per square foot did not have a significant effect on coalescer element life. Under all conditions studied, the effluent water contained less than 15 parts per million oil, only ten percent of the samples analyzed contained more than this amount. The results indicate that coalescence is useful as a final polishing step in an oil/water separation system.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yuanli Chen ◽  
Hui Fan ◽  
Xinlin Zha ◽  
Wenwen Wang ◽  
Yi Wu ◽  
...  

AbstractHigh efficiency and anti-pollution oil/water separation membrane has been widely explored and researched. There are a large number of hydroxyl groups on the surface of silica, which has good wettability and can be used for oil-water separation membranes. Hydrophilic silica nanostructures with different morphologies were synthesized by changing templates and contents of trimethylbenzene (TMB). Here, silica nanospheres with radical pores, hollow silica nanospheres and worm-like silica nanotubes were separately sprayed on the PVA-co-PE nanofiber membrane (PM). The abundance of hydroxyl groups and porous structures on PM surfaces enabled the absorption of silica nanospheres through hydrogen bonds. Compared with different silica nanostructures, it was found that the silica/PM exhibited excellent super-hydrophilicity in air and underwater “oil-hating” properties. The PM was mass-produced in our lab through melt-extrusion-phase-separation technique. Therefore, the obtained membranes not only have excellent underwater superoleophobicity but also have a low-cost production. The prepared silica/PM composites were used to separate n-hexane/water, silicone oil/water and peanut oil water mixtures via filtration. As a result, they all exhibited efficient separation of oil/water mixture through gravity-driven filtration.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 457
Author(s):  
Chunlei Ren ◽  
Wufeng Chen ◽  
Chusheng Chen ◽  
Louis Winnubst ◽  
Lifeng Yan

Porous Al2O3 membranes were prepared through a phase-inversion tape casting/sintering method. The alumina membranes were embedded with finger-like pores perpendicular to the membrane surface. Bare alumina membranes are naturally hydrophilic and underwater oleophobic, while fluoroalkylsilane (FAS)-grafted membranes are hydrophobic and oleophilic. The coupling of FAS molecules on alumina surfaces was confirmed by Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy measurements. The hydrophobic membranes exhibited desired thermal stability and were super durable when exposed to air. Both membranes can be used for gravity-driven oil/water separation, which is highly cost-effective. The as-calculated separation efficiency (R) was above 99% for the FAS-grafted alumina membrane. Due to the excellent oil/water separation performance and good chemical stability, the porous ceramic membranes display potential for practical applications.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 486-493
Author(s):  
Ting Liang ◽  
Biao Wang ◽  
Zhenzhong Fan ◽  
Qingwang Liu

Abstract A facile method for fabricating superhydrophobic and superoleophilic powder with 5A zeolite and stearic acid (SA) is reported in this study. The effect of different contents of SA on contact angle (CA) was investigated. The maximum water CA was 156.2°, corresponding to the optimum SA content of 1.5 wt%. The effects of SA and the mechanism of modified 5A zeolite powder by SA were analyzed by sedimentation analysis experiment, FTIR analysis, particle size analysis, and SEM characterization. The SA-modified 5A zeolite was used as an oil sorbent to separate oil–water mixture with potential use in floating oil. The separation efficiency was above 98%.


MRS Advances ◽  
2017 ◽  
Vol 2 (31-32) ◽  
pp. 1699-1706
Author(s):  
Hussain Al-Qahtani ◽  
Michael S. H. Boutilier ◽  
Rahul Ramakrishnan ◽  
Rohit Karnik

ABSTRACTThis article presents a laboratory module developed for undergraduate micro/nano engineering laboratory courses in the mechanical engineering departments at the Massachusetts Institute of Technology and King Fahd University of Petroleum and Minerals. In this laboratory, students fabricate superoleophobic membranes by spray-coating of titania nanoparticles on steel meshes, characterize the surfaces and ability of the membrane to retain oil, and then use these membranes to separate an oil-water mixture. The laboratory module covers nanomaterials, nanomanufacturing, materials characterization, and understanding of the concepts of surface tension and hydrostatics, with oil-water separation as an application. The laboratory experiments are easy to set up based on commercially available tools and materials, which will facilitate implementation of this module in other educational institutions. The significance of oil-water separation in the petroleum industry and integration of concepts from fluid mechanics in the laboratory module will help to illustrate the relevance of nanotechnology to mechanical and materials engineering and its potential to address some of the future societal needs.


2020 ◽  
Vol 8 ◽  
Author(s):  
Usama Zulfiqar ◽  
Andrew G. Thomas ◽  
Allan Matthews ◽  
David J. Lewis

Oil/water mixtures are a potentially major source of environmental pollution if efficient separation technology is not employed during processing. A large volume of oil/water mixtures is produced via many manufacturing operations in food, petrochemical, mining, and metal industries and can be exposed to water sources on a regular basis. To date, several techniques are used in practice to deal with industrial oil/water mixtures and oil spills such as in situ burning of oil, bioremediation, and solidifiers, which change the physical shape of oil as a result of chemical interaction. Physical separation of oil/water mixtures is in industrial practice; however, the existing technologies to do so often require either dissipation of large amounts of energy (such as in cyclones and hydrocyclones) or large residence times or inventories of fluids (such as in decanters). Recently, materials with selective wettability have gained attention for application in separation of oil/water mixtures and surfactant stabilized emulsions. For example, a superhydrophobic material is selectively wettable toward oil while having a poor affinity for the aqueous phase; therefore, a superhydrophobic porous material can easily adsorb the oil while completely rejecting the water from an oil/water mixture, thus physically separating the two components. The ease of separation, low cost, and low-energy requirements are some of the other advantages offered by these materials over existing practices of oil/water separation. The present review aims to focus on the surface engineering aspects to achieve selectively wettability in materials and its their relationship with the separation of oil/water mixtures with particular focus on emulsions, on factors contributing to their stability, and on how wettability can be helpful in their separation. Finally, the challenges in application of superwettable materials will be highlighted, and potential solutions to improve the application of these materials will be put forward.


Membranes ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 86 ◽  
Author(s):  
Kyohei Ueno ◽  
Saki Yamada ◽  
Toshinari Watanabe ◽  
Hideyuki Negishi ◽  
Takuya Okuno ◽  
...  

Hydrophobic pure-silica *BEA-type zeolite membranes with large pores were prepared on tubular silica supports by hydrothermal synthesis using a secondary growth method and were applied to the separation of alcohol/water mixtures by pervaporation (PV), an alternative energy-efficient process for production of biofuels. Amorphous pure-silica tubular silica supports, free of Al atoms, were used for preparing the membranes. In this study, the effects of the synthesis conditions, such as the H2O/SiO2 and NH4F/SiO2 ratios in the synthetic gel, on the membrane formation process and separation performance were systematically investigated. The successfully prepared dense and continuous membranes exhibited alcohol selectivity and high flux for the separation of ethanol/water and butanol/water mixtures. The pure-silica *BEA membranes obtained under optimal conditions (0.08SiO2:0.5TEAOH:0.7NH4F:8H2O) showed high PV performance with a separation factor of 229 and a flux of 0.62 kg·m−2·h−1 for a 1 wt % n-butanol/water mixture at 318 K. This result was attributed to the hydrophobicity and large pore size of the pure-silica *BEA membrane. This was the first successful synthesis of hydrophobic large-pore zeolite membranes on tubular supports with alcohol selectivity, and the obtained results could provide new insights into the research on hydrophobic membranes with high permeability.


2015 ◽  
Vol 73 (5) ◽  
pp. 1098-1103 ◽  
Author(s):  
Jun Liu ◽  
Wanxia He ◽  
Peng Li ◽  
Siying Xia ◽  
Xiaomeng Lü ◽  
...  

Oil–water separation has recently become a worldwide challenge due to the frequent occurrence of oil spill accidents and increasing industrial oily wastewater. In this work, the multifunctional mesh films with underwater oleophobicity and certain bacteriostatic effects are prepared by layer-by-layer assembly of graphene oxide-silica coatings on stainless steel mesh. The mesh film exhibits excellent environmental stability under a series of harsh conditions. The new, facile and reusable separation system is proposed to achieve deep treatment of oily wastewater, and the oil collection rate can reach over 99%.


Sign in / Sign up

Export Citation Format

Share Document