Water Scarcity in Semi-Arid Regions of Bankura District, West Bengal, India-Problems and Prospects

Author(s):  
Uday Chatterjee
polemica ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 072-086
Author(s):  
Sandra Sereide Ferreira da Silva ◽  
Vera Lúcia Antunes De Lima ◽  
Ângela Maria Cavalcanti Ramalho ◽  
Allan Carlos Alves

Resumo: A escassez da água em regiões áridas e semiáridas tem sido tema de debates, políticas e pesquisas com o objetivo principal de subsidiar as ações capazes de permitir o seu aproveitamento racional, permitindo a convivência da população com os períodos de seca ou reduzida precipitação. Assim, a escassez de água tem conduzido à implantação de projetos de desenvolvimento, que têm como desafio a busca de alternativas de convivência com a seca que conduzam a melhorias sociais. Com base nesse contexto, este estudo tem como objetivo propor a criação de um modelo de construção de cenários para viabilidade do reúso de água para ser utilizado como elemento mitigador das implicações da seca em regiões semiáridas. O modelo de construção de cenários é um importante instrumento de gerenciamento de recursos naturais, neste caso específico, recursos hídricos, pois permite envolver um grande número de participantes, tem a possibilidade de orientar o debate público para a construção estratégica coletiva de um futuro almejado, contribui para um eficaz processo de aprendizagem organizacional no âmbito do Sistema Nacional de Gerenciamento de Recursos Hídricos visando um melhor entendimento, tanto dos aspectos ambientais quanto dos aspectos sociais e institucionais relacionados aos recursos hídricos no País, em especial, nas regiões semiáridas. Como se trabalham e convivem com a incerteza, os cenários procuram analisar e sistematizar as diversas probabilidades dos eventos e dos processos por meio da exploração dos pontos de mudança e das grandes tendências, de modo que as alternativas mais prováveis sejam antecipadas.Palavras-chaves: Recursos Hídricos. Reúso de Água. Regiões Semiáridas. Construção de Cenários.Abstract: Water scarcity in arid and semi-arid regions has been the subject of debates, policies and research with the main objective of subsidizing actions capable of allowing their rational use, allowing the population to coexist with periods of drought or reduced precipitation. Thus, water scarcity has led to the implementation of development projects, which challenge the search for alternatives to coexistence with drought that lead to social improvements. Based on this context, this study aims to propose the creation of a model for the construction of scenarios for the feasibility of water reuse to be used as a mitigating element of the drought implications in semi-arid regions. The scenario building model is an important tool for managing natural resources, in this specific case, water resources, since it allows a large number of participants to be involved, it has the possibility of guiding the public debate towards the collective strategic construction of a desired future, contributes to an effective organizational learning process within the National Water Resources Management System aiming at a better understanding of both the environmental aspects and the social and institutional aspects related to the water resources in the Country, especially in the semi-arid regions. As they work and coexist with uncertainty, the scenarios seek to analyze and systematize the various probabilities of events and processes by exploring the points of change and the major trends, so that the most likely alternatives are anticipated.Keywords: Water Resources. Water reuse. Semi-Arid Regions. Construction of Scenarios.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 385
Author(s):  
Sandile T. Hadebe ◽  
Albert T. Modi ◽  
Tafadzwanashe Mabhaudhi

Lack of cereal nutritional water productivity (NWP) information disadvantages linkages of nutrition to water–food nexus as staple food crops in Sub-Saharan Africa (SSA). This study determined the suitability of sorghum (Sorghum bicolor L. Moench) genotypes to alleviate protein, Zn and Fe deficiency under water-scarce dryland conditions through evaluation of NWP. Sorghum genotypes (Macia, Ujiba, PAN8816, IsiZulu) NWP was quantified from three planting seasons for various sorghum seed nutrients under dryland semi-arid conditions. Seasons by genotypes interaction highly and significantly affected NWPStarch, Ca, Cu, Fe, and significantly affected NWPMg, K, Na, P, Zn. Genotypic variations highly and significantly affected sorghum NWPProtein, Mn. Macia exhibited statistically superior NWPprotein (13.2–14.6 kg·m−3) and NWPZn (2.0–2.6 g·m−3) compared to other tested genotypes, while Macia NWPFe (2.6–2.7 g·m−3) was considerably inferior to that of Ujiba and IsiZulu landraces under increased water scarcity. Excellent overall NWPprotein, Fe and Zn under water scarcity make Macia a well-rounded genotype suitable to alleviating food and nutritional insecurity challenges in semi-arid SSA; however, landraces are viable alternatives with limited NWPprotein and Zn penalty under water-limited conditions. These results underline genotype selection as a vital tool in improving “nutrition per drop” in semi-arid regions.


2014 ◽  
Vol 8 (2) ◽  
pp. 951-959 ◽  
Author(s):  
Mahmoud Abu-Allaban ◽  
Ali El-Naqa ◽  
Mohammed Jaber ◽  
Nezar Hammouri

2020 ◽  
Vol 76 (11) ◽  
Author(s):  
Senni Rachida ◽  
De Belair Gerard ◽  
Abdelkrim Hacene
Keyword(s):  

1987 ◽  
Vol 19 (9) ◽  
pp. 97-106
Author(s):  
J. J. Vasconcelos

Hater resource managers in semi-arid regions are faced with some unique problems. The wide variations in precipitation and stream flows in semi-arid regions increase man's dependence on the ground water resource for an ample and reliable supply of water. Proper management of the ground water resource is absolutely essential to the economic well being of semi-arid regions. Historians have discovered the remains of vanished advanced civilizations based on irrigated agriculture which were ignorant of the importance of proper ground water resource management. In the United States a great deal of effort is presently being expended in the study and control of toxic discharges to the ground water resource. What many public policy makers fail to understand is that the potential loss to society resulting from the mineralization of the ground water resource is potentially much greater than the loss caused by toxic wastes discharges, particularly in developing countries. Appropriations for ground water resource management studies in developed countries such as the United States are presently much less than those for toxic wastes management and should be increased. It is the reponsibility of the water resource professional to emphasize to public policy makers the importance of ground water resource management. Applications of ground water resource management models in the semi-arid Central Valley of California are presented. The results demonstrate the need for proper ground water resource management practices in semi-arid regions and the use of ground water management models as a valuable tool for the water resource manager.


Sign in / Sign up

Export Citation Format

Share Document