scholarly journals Geographic variation among brown and grizzly bears (Ursus arctos) in North America / by E. Raymond Hall.

Author(s):  
E. Raymond Hall ◽  
2006 ◽  
Vol 84 (3) ◽  
pp. 473-489 ◽  
Author(s):  
Garth Mowat ◽  
Douglas C Heard

We measured stable carbon and nitrogen isotope ratios in guard hair of 81 populations of grizzly bears (Ursus arctos L., 1758) across North America and used mixing models to assign diet fractions of salmon, meat derived from terrestrial sources, kokanee (Oncorhynchus nerka (Walbaum in Artedi, 1792)), and plants. In addition, we examined the relationship between skull size and diet of bears killed by people in British Columbia. The majority of carbon and nitrogen assimilated by most coastal grizzly bear populations was derived from salmon, while interior populations usually derived a much smaller fraction of their nutrients from salmon, even in areas with relatively large salmon runs. Terrestrial prey was a large part of the diet where ungulates were abundant, with the highest fractions observed in the central Arctic, where caribou (Rangifer tarandus (L., 1758)) were very abundant. Bears in some boreal areas, where moose (Alces alces (L., 1758)) were abundant, also ate a lot of meat. Bears in dryer areas with low snowfall tended to have relatively high meat diet fractions, presumably because ungulates are more abundant in such environments. Kokanee were an important food in central British Columbia. In areas where meat was more than about a third of the diet, males and females had similar meat diet fractions, but where meat was a smaller portion of the diet, males usually had higher meat diet fractions than females. Females reached 95% of their average adult skull length by 5 years of age, while males took 8 years. Skull width of male grizzly bears increased throughout life, while this trend was slight in females. Skull size increased with the amount of salmon in the diet, but the influence of terrestrial meat on size was inconclusive. We suggest that the amount of salmon in the diet is functionally related to fitness in grizzly bears.


1991 ◽  
Vol 69 (9) ◽  
pp. 2404-2409 ◽  
Author(s):  
K. Elgmork ◽  
H. Riiser

Analysis of measurements of guard hairs from North American brown or grizzly bears and Scandinavian brown bears (Ursus arctos L.) showed variation over the body and along the hair shaft. Using the medullary index, i.e., the medullary diameter as a percentage of the hair diameter, comparisons were made among body areas, age groups, geographical areas, sexes, and seasons. Statistically significant differences were found among body areas. Hairs from the foreleg were shorter and wider, with a smaller medullary index than those from other body areas. There was a weak but statistically significant negative correlation between the medullary index and age of individuals. Medullary indices from Scandinavian bears were significantly greater than those from Alaskan bears, which in turn were greater than those from bears of the contiguous United States. There were no statistically significant differences between the medullary index and sex or season.


The Auk ◽  
2021 ◽  
Author(s):  
Emma I Greig ◽  
Eva Kinnebrew ◽  
Max L Witynski ◽  
Eric C Larsen

Abstract Most birds that show geographic variation in their songs discriminate between local and foreign songs, which may help them avoid unnecessary conflicts with vagrant individuals or similar-sounding congeners. However, some species respond equally to foreign and local songs, which may be useful if foreign individuals present territorial threats or if there are no sympatric congeners to avoid. Species without sympatric congeners are not commonly tested in playback studies, but they offer an opportunity to see how song variation and recognition unfolds when the pressure to avoid similar congeners is absent. Here, we use Verdins (Auriparus flaviceps), a monotypic genus of songbird with no confamilials in North America, to explore song variation and recognition in a species living without close relatives. We assessed geographic variation in song across the Verdin range and conducted a playback experiment using exemplars from 2 acoustically divergent and geographically distant regions as treatments. We found significant geographic variation in song that mapped well onto ecologically distinct desert regions. We found that Verdins had stronger vocal responses to local-sounding songs, but had equal movement responses to local-sounding and foreign songs. These results are similar to results found in other species without sympatric congeners and provide an example of a species that investigates acoustically divergent conspecific songs, despite recognizing salient differences in those songs.


Author(s):  
Marc Cattet ◽  
David M. Janz ◽  
Luciene Kapronczai ◽  
Joy A. Erlenbach ◽  
Heiko T. Jansen ◽  
...  

1976 ◽  
Vol 13 (2) ◽  
pp. 341-347 ◽  
Author(s):  
Charles S. Churcher ◽  
Alan V. Morgan

The distal end of the left humerus of a grizzly bear, Ursus arctos, has been recovered from above the Early Wisconsin Sunnybrook Till at Woodbridge, Ontario, from the same horizon that previously has yielded remains of the woolly mammoth, Mammuthus primigenius. The age of these specimens is estimated at 40 000–50 000 years BP, within the mid-Wisconsin, Port Talbot Interstadial. The only other recognized Canadian record of a grizzly bear east of Manitoba is from a gravel sequence at Barrie, near Lake Simcoe, Ontario, dated from a bone fragment to 11 700 ± 250 years BP. A specimen recovered in Toronto in 1913 from an Early Wisconsin horizon is also considered to represent the grizzly. Bears of the grizzly type, Ursus arctos-horribilis were present in Ontario before and after the Early and Late Wisconsin ice advances.


2021 ◽  
Author(s):  
Heiko T. Jansen ◽  
Brandon Evans Hutzenbiler ◽  
Hannah R. Hapner ◽  
Madeline L. McPhee ◽  
Anthony M. Carnahan ◽  
...  

ABSTRACTHibernation is characterized by suppression of many physiological processes. To determine if this state is reversible in a non-food caching species, we fed hibernating grizzly bears (Ursus arctos horribilis) glucose for 10 days to replace 53% or 100% of the estimated minimum daily energetic cost of hibernation. Feeding caused serum concentrations of glycerol and ketones (ß-hydroxybutyrate) to return to active season levels irrespective of the amount of glucose fed. By contrast, free-fatty acids and indices of metabolic rate, such as general activity, heart rate, and strength of the daily heart rate rhythm and insulin sensitivity were restored to roughly 50% of active season levels. Body temperature was unaffected by feeding. To determine the contribution of adipose to these metabolic effects of glucose feeding we cultured bear adipocytes collected at the beginning and end of the feeding and performed metabolic flux analysis. We found a roughly 33% increase in energy metabolism after feeding. Moreover, basal metabolism before feeding was 40% lower in hibernation cells compared to fed cells or active cells cultured at 37°C, thereby confirming the temperature independence of metabolic rate. The partial suppression of circulating FFA with feeding likely explains the incomplete restoration of insulin sensitivity and other metabolic parameters in hibernating bears. Further suppression of metabolic function is likely an active process. Together, the results provide a highly controlled model to examine the relationship between nutrient availability and metabolism on the hibernation phenotype in bears.


1995 ◽  
Vol 73 (4) ◽  
pp. 704-712 ◽  
Author(s):  
Bruce N. McLellan ◽  
Fred W. Hovey

Based on the analysis of 1100 feces or scats, the seasonal diet of grizzly bears (Ursus arctos) in the Flathead drainage between 1979 and 1991 was estimated. In the early spring, major foods included ungulates and hedysarum roots (Hedysarum sulphurescens). Later in the spring and early summer, green vegetation that mainly included horsetails (Equisetum arvense), graminoids, and cow parsnip (Heracleum lanatum) dominated the diet. Later in the summer, berries, particularly huckleberries (Vaccinium spp.) and soopolallie (Shepherdia canadensis), were most common. In the autumn, berries, ungulates, and hedysarum roots were major foods. Seasonal changes in nutrients were measured for major foods. The volume of a food consumed within a season was inversely related to food quality, suggesting that food availability and handling time may have been more important factors influencing diet selection. The proportions of food items in the scats, and species of fruit in particular, varied among years. The Flathead and contiguous Waterton Lakes National Park are so far the only study areas in North America that contain all major bear foods found across the interior of the continent, and in particular, both major berry species, huckleberries and soopolallie. This observation supports the hypothesis that a favourable food base in the Flathead is partially responsible for the high density of bears found there. It is important for managers to realize the possible uniqueness of the Flathead area and not extrapolate information without due caution.


2021 ◽  
Vol 135 (1) ◽  
pp. 61-67
Author(s):  
David Hamer

Seeds of Whitebark Pine (Pinus albicaulis) are a major food for Grizzly Bears (Ursus arctos) in the Yellowstone ecosystem. In Canada, Grizzly Bears are known to eat Whitebark Pine seeds, but little additional information, such as the extent of such use and habitat characteristics of feeding sites, is available. Because Grizzly Bears almost always obtain Whitebark Pine seeds by excavating cones from persistent caching sites (middens) made by Red Squirrels (Tamiasciurus hudsonicus), it is possible to infer Whitebark Pine feeding when bears are located near excavated middens in Whitebark Pine stands. During 2013–2018, I conducted a retrospective study in Banff National Park using data from 23 Grizzly Bears equipped by Parks Canada staff with global positioning system (GPS) collars. My objectives were to use GPS fixes to determine the percentage of these bears that had been located in close proximity to excavated middens containing Whitebark Pine seeds and to describe the habitat at these excavated middens. I linked 15 bears (65%) to excavated middens and, by inference, consumption of Whitebark Pine seeds. Excavated middens occurred on high-elevation (mean 2103 ± 101 [SD] m), steep (mean 26° ± 8°) slopes facing mostly (96%) north through west (0–270°). Use of Whitebark Pine seeds by at least 65% of the 23 studied Grizzly Bears suggests that conservation of Whitebark Pine in Banff National Park would concomitantly benefit the at-risk population of Grizzly Bears.


2004 ◽  
Vol 118 (2) ◽  
pp. 239 ◽  
Author(s):  
Robert J. Gau ◽  
Philip D. McLoughlin ◽  
Ray Case ◽  
H. Dean Cluff ◽  
Robert Mulders ◽  
...  

Between May 1995 and June 1999, we equipped eight subadult male (3-5 yrs old) Grizzly Bears (Ursus arctos) with satellite radio-collars within a study area of 235,000 km2, centred 400 km northeast of Yellowknife, Northwest Territories, Canada. Subadult male annual home ranges were extraordinarily large (average = 11,407 km2, SE = 3849) due, in part, to their movement's occasional linear directionality. We believe their long-range linear movements may reflect some individuals tracking the migration of Caribou (Rangifer tarandus). Seasonal daily movement patterns were similar to adult males that were previously reported. The areas used by these bears are the largest ranges reported for any Grizzly Bears and the scale of their movements may put individual bears in contact with humans even when developments are hundreds of kilometres from the central home range of an animal.


1999 ◽  
Vol 87 (2) ◽  
pp. 231-248 ◽  
Author(s):  
Troy Merrill ◽  
David J Mattson ◽  
R.Gerald Wright ◽  
Howard B Quigley
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document