scholarly journals Defining landscapes suitable for restoration of grizzly bears Ursus arctos in Idaho

1999 ◽  
Vol 87 (2) ◽  
pp. 231-248 ◽  
Author(s):  
Troy Merrill ◽  
David J Mattson ◽  
R.Gerald Wright ◽  
Howard B Quigley
Keyword(s):  
Author(s):  
Marc Cattet ◽  
David M. Janz ◽  
Luciene Kapronczai ◽  
Joy A. Erlenbach ◽  
Heiko T. Jansen ◽  
...  

1976 ◽  
Vol 13 (2) ◽  
pp. 341-347 ◽  
Author(s):  
Charles S. Churcher ◽  
Alan V. Morgan

The distal end of the left humerus of a grizzly bear, Ursus arctos, has been recovered from above the Early Wisconsin Sunnybrook Till at Woodbridge, Ontario, from the same horizon that previously has yielded remains of the woolly mammoth, Mammuthus primigenius. The age of these specimens is estimated at 40 000–50 000 years BP, within the mid-Wisconsin, Port Talbot Interstadial. The only other recognized Canadian record of a grizzly bear east of Manitoba is from a gravel sequence at Barrie, near Lake Simcoe, Ontario, dated from a bone fragment to 11 700 ± 250 years BP. A specimen recovered in Toronto in 1913 from an Early Wisconsin horizon is also considered to represent the grizzly. Bears of the grizzly type, Ursus arctos-horribilis were present in Ontario before and after the Early and Late Wisconsin ice advances.


2021 ◽  
Author(s):  
Heiko T. Jansen ◽  
Brandon Evans Hutzenbiler ◽  
Hannah R. Hapner ◽  
Madeline L. McPhee ◽  
Anthony M. Carnahan ◽  
...  

ABSTRACTHibernation is characterized by suppression of many physiological processes. To determine if this state is reversible in a non-food caching species, we fed hibernating grizzly bears (Ursus arctos horribilis) glucose for 10 days to replace 53% or 100% of the estimated minimum daily energetic cost of hibernation. Feeding caused serum concentrations of glycerol and ketones (ß-hydroxybutyrate) to return to active season levels irrespective of the amount of glucose fed. By contrast, free-fatty acids and indices of metabolic rate, such as general activity, heart rate, and strength of the daily heart rate rhythm and insulin sensitivity were restored to roughly 50% of active season levels. Body temperature was unaffected by feeding. To determine the contribution of adipose to these metabolic effects of glucose feeding we cultured bear adipocytes collected at the beginning and end of the feeding and performed metabolic flux analysis. We found a roughly 33% increase in energy metabolism after feeding. Moreover, basal metabolism before feeding was 40% lower in hibernation cells compared to fed cells or active cells cultured at 37°C, thereby confirming the temperature independence of metabolic rate. The partial suppression of circulating FFA with feeding likely explains the incomplete restoration of insulin sensitivity and other metabolic parameters in hibernating bears. Further suppression of metabolic function is likely an active process. Together, the results provide a highly controlled model to examine the relationship between nutrient availability and metabolism on the hibernation phenotype in bears.


1995 ◽  
Vol 73 (4) ◽  
pp. 704-712 ◽  
Author(s):  
Bruce N. McLellan ◽  
Fred W. Hovey

Based on the analysis of 1100 feces or scats, the seasonal diet of grizzly bears (Ursus arctos) in the Flathead drainage between 1979 and 1991 was estimated. In the early spring, major foods included ungulates and hedysarum roots (Hedysarum sulphurescens). Later in the spring and early summer, green vegetation that mainly included horsetails (Equisetum arvense), graminoids, and cow parsnip (Heracleum lanatum) dominated the diet. Later in the summer, berries, particularly huckleberries (Vaccinium spp.) and soopolallie (Shepherdia canadensis), were most common. In the autumn, berries, ungulates, and hedysarum roots were major foods. Seasonal changes in nutrients were measured for major foods. The volume of a food consumed within a season was inversely related to food quality, suggesting that food availability and handling time may have been more important factors influencing diet selection. The proportions of food items in the scats, and species of fruit in particular, varied among years. The Flathead and contiguous Waterton Lakes National Park are so far the only study areas in North America that contain all major bear foods found across the interior of the continent, and in particular, both major berry species, huckleberries and soopolallie. This observation supports the hypothesis that a favourable food base in the Flathead is partially responsible for the high density of bears found there. It is important for managers to realize the possible uniqueness of the Flathead area and not extrapolate information without due caution.


2021 ◽  
Vol 135 (1) ◽  
pp. 61-67
Author(s):  
David Hamer

Seeds of Whitebark Pine (Pinus albicaulis) are a major food for Grizzly Bears (Ursus arctos) in the Yellowstone ecosystem. In Canada, Grizzly Bears are known to eat Whitebark Pine seeds, but little additional information, such as the extent of such use and habitat characteristics of feeding sites, is available. Because Grizzly Bears almost always obtain Whitebark Pine seeds by excavating cones from persistent caching sites (middens) made by Red Squirrels (Tamiasciurus hudsonicus), it is possible to infer Whitebark Pine feeding when bears are located near excavated middens in Whitebark Pine stands. During 2013–2018, I conducted a retrospective study in Banff National Park using data from 23 Grizzly Bears equipped by Parks Canada staff with global positioning system (GPS) collars. My objectives were to use GPS fixes to determine the percentage of these bears that had been located in close proximity to excavated middens containing Whitebark Pine seeds and to describe the habitat at these excavated middens. I linked 15 bears (65%) to excavated middens and, by inference, consumption of Whitebark Pine seeds. Excavated middens occurred on high-elevation (mean 2103 ± 101 [SD] m), steep (mean 26° ± 8°) slopes facing mostly (96%) north through west (0–270°). Use of Whitebark Pine seeds by at least 65% of the 23 studied Grizzly Bears suggests that conservation of Whitebark Pine in Banff National Park would concomitantly benefit the at-risk population of Grizzly Bears.


2004 ◽  
Vol 118 (2) ◽  
pp. 239 ◽  
Author(s):  
Robert J. Gau ◽  
Philip D. McLoughlin ◽  
Ray Case ◽  
H. Dean Cluff ◽  
Robert Mulders ◽  
...  

Between May 1995 and June 1999, we equipped eight subadult male (3-5 yrs old) Grizzly Bears (Ursus arctos) with satellite radio-collars within a study area of 235,000 km2, centred 400 km northeast of Yellowknife, Northwest Territories, Canada. Subadult male annual home ranges were extraordinarily large (average = 11,407 km2, SE = 3849) due, in part, to their movement's occasional linear directionality. We believe their long-range linear movements may reflect some individuals tracking the migration of Caribou (Rangifer tarandus). Seasonal daily movement patterns were similar to adult males that were previously reported. The areas used by these bears are the largest ranges reported for any Grizzly Bears and the scale of their movements may put individual bears in contact with humans even when developments are hundreds of kilometres from the central home range of an animal.


1988 ◽  
Vol 66 (11) ◽  
pp. 2492-2499 ◽  
Author(s):  
R. D. Boertje ◽  
W. C. Gasaway ◽  
D. V. Grangaard ◽  
D. G. Kelleyhouse

Radio-collared grizzly bears (Ursus arctos) were sighted daily for approximately 1-month periods during spring, summer, and fall to estimate predation rates. Predation rates on adult moose (Alces alces) were highest in spring, lowest in summer, and intermediate in fall. The highest kill rates were by male grizzlies killing cow moose during the calving period. We estimated that each adult male grizzly killed 3.3–3.9 adult moose annually, each female without cub(s) killed 0.6–0.8 adult moose and 0.9–1.0 adult caribou (Rangifer tarandus) annually, and each adult bear killed at least 5.4 moose calves annually. Grizzly predation rates on calves and grizzly density were independent of moose density and are probably more related to area-specific factors, e.g., availability of alternative foods. An important implication of our results is that managers should not allow moose densities to decline to low levels, because grizzlies can have a greater relative impact on low- than on high-density moose populations and because grizzly predation can be difficult to reduce. Grizzly bears were primarily predators, rather than scavengers, in this area of low prey availability (11 moose/grizzly bear); bears killed four times more animal biomass than they scavenged.


1999 ◽  
Vol 77 (10) ◽  
pp. 1513-1520 ◽  
Author(s):  
David Hamer

Hedysarum (Hedysarum spp.) roots are a primary food of grizzly bears (Ursus arctos) in the Front Ranges of the Canadian Rocky Mountains. I studied the effects of recent forest fire on yellow hedysarum (H. sulphurescens) habitat by comparing root density, mass, fibre content, ease of digging, and use by grizzly bears in and adjacent to two prescribed burns that were conducted in Banff National Park, Alberta, in 1986 (Cascade Valley) and 1990 (Panther Valley). Digging was 12-14% easier in burned than in forested habitat. In the Cascade burn, yellow hedysarum roots were significantly more abundant and heavier than in the adjacent forest. This burn was intensively dug by grizzly bears between 1995 and 1997, but no diggings were found in the adjacent forest. In the Panther burn, no significant differences in root quality or mass were found. Bears dug few roots in the burn and did not dig in the adjacent forest. Their use of these two burns demonstrates prescribed fire's potential to create important yellow hedysarum digging habitat for grizzly bears in Banff National Park.


Sign in / Sign up

Export Citation Format

Share Document