scholarly journals New Simple Modification of Dip, Spray and Cathodic Electrodeposition Coating Methods for Wire Coating (3D Coating)

2019 ◽  
Vol 5 (3) ◽  
pp. 70-78
Author(s):  
Hisham R. Sadig ◽  
Li Cheng ◽  
Xiang Tengfei ◽  
2013 ◽  
Vol 10 (2) ◽  
pp. 51
Author(s):  
Siti Farhana Zakaria ◽  
Keith R Millington

Polymers and organic materials that are exposed to sunlight undergo photooxidation, which leads to deterioration of their physical properties. To allow adequate performance under outdoor conditions, synthetic polymers require additives such as antioxidants and UV absorbers. A major problem with optimising polymer formulations to maximise their working life span is that accelerated weathering tests are empirical. The conditions differ significantly from real weathering situations, and samples require lengthy irradiation period. Degradation may not be apparent in the early stages of exposure, although this is when products such as hydroperoxides are formed which later cause acceleration of oxidation. A simple way of quantifying the number of free radicals presents in organic materials following exposure to light or heat is by measuring chemiluminescence (CL) emission. Most polymers emit CL when they undergo oxidative degradation, and it originates from the bimolecular reaction of macroperoxy radicals which creates an excited carbonyl.


1989 ◽  
Vol 21 (4-5) ◽  
pp. 87-95
Author(s):  
J. De Santis ◽  
A. A. Friedman

Overloaded anaerobic treatment systems are characterized by high concentrations of volatile fatty acids and molecular hydrogen and poor conversion of primary substrates to methane. Previous experiments with fixed–film reactors indicated that operation with reduced headspace pressures enhanced anaerobic treatment. For these studies, four suspended culture, anaerobic reactors were operated with headspace pressures maintained between 0.5 and 1.0 atm and a solids retention time of 15 days. For lightly loaded systems (0.4 g SCOD/g VSS-day) vacuum operation provided minor treatment improvements. For shock organic loads, vacuum operation proved to be more stable and to support quicker recovery from upset conditions. Based on these studies and a companion set of bioassay tests, it was concluded that: (a) a loading rate of about 1.0 g SCOD/g VSS-day represents a practical loading limit for successful anaerobic treatment, (b) a headspace pressure of approximately 0.75 atm appears to be an optimum operating pressure for anaerobic systems and (c) simple modification to existing systems may provide relief for organically overloaded systems.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 110
Author(s):  
Mir Saman Safavi ◽  
Frank C. Walsh ◽  
Maria A. Surmeneva ◽  
Roman A. Surmenev ◽  
Jafar Khalil-Allafi

Hydroxyapatite has become an important coating material for bioimplants, following the introduction of synthetic HAp in the 1950s. The HAp coatings require controlled surface roughness/porosity, adequate corrosion resistance and need to show favorable tribological behavior. The deposition rate must be sufficiently fast and the coating technique needs to be applied at different scales on substrates having a diverse structure, composition, size, and shape. A detailed overview of dry and wet coating methods is given. The benefits of electrodeposition include controlled thickness and morphology, ability to coat a wide range of component size/shape and ease of industrial processing. Pulsed current and potential techniques have provided denser and more uniform coatings on different metallic materials/implants. The mechanism of HAp electrodeposition is considered and the effect of operational variables on deposit properties is highlighted. The most recent progress in the field is critically reviewed. Developments in mineral substituted and included particle, composite HAp coatings, including those reinforced by metallic, ceramic and polymeric particles; carbon nanotubes, modified graphenes, chitosan, and heparin, are considered in detail. Technical challenges which deserve further research are identified and a forward look in the field of the electrodeposited HAp coatings is taken.


1999 ◽  
Vol 8 (1) ◽  
pp. 40-46 ◽  
Author(s):  
Melisa R. Ellis ◽  
Michael K. Wynne

The loudness growth in 1/2-octave bands (LGOB) procedure has been shown previously to provide valid estimates of loudness growth for adults with normal hearing and those with hearing loss (Allen, Hall, & Jeng, 1990), and it has been widely incorporated into fitting strategies for adult hearing aid users by a hearing aid manufacturer. Here, we applied a simple modification of LGOB to children and adults with normal hearing and then compared the loudness growth functions (as obtained from end-point data) between the two age groups. In addition, reliability data obtained within a single session and between test sessions were compared between the two groups. Large differences were observed in the means between the two groups for the lower boundary values, the upper boundary values, and the range between boundaries both within and across all frequencies. The data obtained from children also had greater variance than the adult data. In addition, there was more variability in the data across test sessions for children. Many test-retest differences for children exceeded 10 dB. Adult test-retest differences were generally less than 10 dB. Although the LGOB with the modifications used in this study may be used to measure loudness growth in children, its poor reliability with this age group may limit its clinical use for children with hearing loss. Additional work is needed to explore whether loudness growth measures can be adapted successfully to children and whether these measures contribute worthwhile information for fitting hearing aids to children.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Teunis van Manen ◽  
Shahram Janbaz ◽  
Kaspar M. B. Jansen ◽  
Amir A. Zadpoor

AbstractShape-shifting materials are a powerful tool for the fabrication of reconfigurable materials. Upon activation, not only a change in their shape but also a large shift in their material properties can be realized. As compared with the 4D printing of 2D-to-3D shape-shifting materials, the 4D printing of reconfigurable (i.e., 3D-to-3D shape-shifting) materials remains challenging. That is caused by the intrinsically 2D nature of the layer-by-layer manner of fabrication, which limits the possible shape-shifting modes of 4D printed reconfigurable materials. Here, we present a single-step production method for the fabrication and programming of 3D-to-3D shape-changing materials, which requires nothing more than a simple modification of widely available fused deposition modeling (FDM) printers. This simple modification allows the printer to print on curved surfaces. We demonstrate how this modified printer can be combined with various design strategies to achieve high levels of complexity and versatility in the 3D-to-3D shape-shifting behavior of our reconfigurable materials and devices. We showcase the potential of the proposed approach for the fabrication of deployable medical devices including deployable bifurcation stents that are otherwise extremely challenging to create.


Sign in / Sign up

Export Citation Format

Share Document