scholarly journals Successful Use of BRAF/MEK Inhibitors as a Neoadjuvant Approach in the Definitive Treatment of Papillary Craniopharyngioma

2020 ◽  
Vol 18 (12) ◽  
pp. 1590-1595
Author(s):  
Karam Khaddour ◽  
Michael R. Chicoine ◽  
Jiayi Huang ◽  
Sonika Dahiya ◽  
George Ansstas

Craniopharyngiomas are rare tumors that arise in the suprasellar region of the brain and are known for their aggressive nature despite their WHO grade I. This is due to the complex neuroanatomy of the sellar/suprasellar region and their proximity to the optic nerve apparatus, hypothalamic–pituitary tract, and other critical neuroanatomical structures. Definitive treatment is based on a multidisciplinary approach and often involves a combination of surgical, radiation, and medical therapy. However, there is high morbidity associated with surgery and RT due to the complex neuroanatomy of this region. Recently, BRAFV600E somatic mutation has been identified in most papillary craniopharyngiomas. This discovery has led to the novel use of RAF pathway inhibitors to treat these tumors. We report the successful use of dabrafenib (BRAF inhibitor) and trametinib (mitogen-activated protein kinase kinase inhibitor) in the neoadjuvant setting followed by definitive stereotactic radiosurgery. We propose an algorithm based on available literature on the integration of targeted therapy in the management of papillary craniopharyngiomas. Our observations, together with prior case reports, advocate the incorporation of targeted therapy for unresectable craniopharyngiomas and reinforce that treatment with dual-targeted therapy is safe and effective.

2014 ◽  
Vol 32 (21) ◽  
pp. 2248-2254 ◽  
Author(s):  
Siwen Hu-Lieskovan ◽  
Lidia Robert ◽  
Blanca Homet Moreno ◽  
Antoni Ribas

Recent breakthroughs in the treatment of advanced melanoma are based on scientific advances in understanding oncogenic signaling and the immunobiology of this cancer. Targeted therapy can successfully block oncogenic signaling in BRAFV600-mutant melanoma with high initial clinical responses, but relapse rates are also high. Activation of an immune response by releasing inhibitory check points can induce durable responses in a subset of patients with melanoma. These advances have driven interest in combining both modes of therapy with the goal of achieving high response rates with prolonged duration. Combining BRAF inhibitors and immunotherapy can specifically target the BRAFV600 driver mutation in the tumor cells and potentially sensitize the immune system to target tumors. However, it is becoming evident that the effects of paradoxical mitogen-activated protein kinase pathway activation by BRAF inhibitors in non–BRAF-mutant cells needs to be taken into account, which may be implicated in the problems encountered in the first clinical trial testing a combination of the BRAF inhibitor vemurafenib with ipilimumab (anti-CTLA4), with significant liver toxicities. Here, we present the concept and potential mechanisms of combinatorial activity of targeted therapy and immunotherapy, review the literature for evidence to support the combination, and discuss the potential challenges and future directions for rational conduct of clinical trials.


2002 ◽  
Vol 282 (6) ◽  
pp. L1324-L1329 ◽  
Author(s):  
Andre Kulisz ◽  
Ningfang Chen ◽  
Navdeep S. Chandel ◽  
Zuohui Shao ◽  
Paul T. Schumacker

The p38 mitogen-activated protein kinase (MAPK) is phosphorylated in response to oxidative stress. Mitochondria in cardiomyocytes increase their generation of reactive oxygen species (ROS) during hypoxia (1–5% O2). These ROS participate in signal transduction pathways involved in adaptive responses, including ischemic preconditioning and gene transcription. The present study therefore tested the hypothesis that hypoxia induces p38 MAPK phosphorylation by augmenting mitochondrial ROS generation. In cardiomyocytes, phosphorylation of p38 was observed in a Po 2-dependent manner during hypoxia. This response was inhibited by rotenone, thenoyltrifluoroacetone, and myxothiazol, inhibitors of mitochondrial complexes I, II, and III, respectively. A similar inhibition was observed in the cells pretreated with anion channel inhibitor DIDS, which may block ROS release from mitochondria. During normoxia, increases in mitochondrial ROS elicited by azide (1–2 mM) or by the mitochondrial inhibitor antimycin A caused increased phosphorylation of p38. Brief treatment with exogenous H2O2 during normoxia also induced phosphorylation of p38 as hypoxia, but this effect was not abolished by myxothiazol or DIDS. The antioxidant N-acetyl-cysteine abolished the p38 response to hypoxia, presumably by scavenging H2O2, but the mitogen extracellular receptor kinase inhibitor PD-98059 did not inhibit p38 phosphorylation during hypoxia. Thus physiological hypoxia leads to p38 phosphorylation through a mechanism that requires electron flux in the proximal region of the mitochondrial electron transport chain, which suggests that either H2O2 or superoxide participates in activating that process.


2004 ◽  
pp. 233-240 ◽  
Author(s):  
AM Nanzer ◽  
S Khalaf ◽  
AM Mozid ◽  
RC Fowkes ◽  
MV Patel ◽  
...  

OBJECTIVES: Ghrelin is a brain-gut peptide with GH-releasing and appetite-inducing activities and a widespread tissue distribution. Ghrelin is the endogenous ligand of the GH secretagogue receptor type 1a (GHS-R1a), and both ghrelin and the GHS-R1a are expressed in the pituitary. There are conflicting data regarding the effects of ghrelin on cell proliferation. A positive effect on proliferation and activation of the mitogen-activated protein kinase (MAPK) pathway has been found in hepatoma, adipose, cardiomyocyte and prostate cell lines. However, ghrelin has also been shown to have anti-proliferative effects on breast, lung and thyroid cell lines. We therefore examined the effect of ghrelin on the rat pituitary cell line GH3. METHODS: RT-PCR was used for the detection of GHS-R1a and pre-proghrelin mRNA expression in GH3 cells. The effect of ghrelin on cell proliferation was studied using [(3)H]thymidine incorporation; cell counting and the activation of the MAPK pathway were studied using immunoblotting and inhibitors of the extracellular signal-regulated kinase 1 and 2 (ERK 1/2), protein kinase C (PKC) and tyrosine phosphatase pathways. RESULTS: GHS-R1a and ghrelin mRNA expression were detected in GH3 cells. Ghrelin, at 10(-10) to 10(-6) M concentrations, significantly increased [(3)H]thymidine incorporation (at 10(-9) M, 183+/-13% (means+/-s.e.m.) compared with untreated controls), while 12-phorbol 13-myristate acetate (PMA) at 10(-7) M (used as a positive control) caused a 212+/-14% increase. A reproducible stimulatory effect of desoctanoyl ghrelin was also observed on [(3)H]thymidine incorporation (135+/-5%; P<0.01 at 10(-9) M compared with control), as well as on the cell count (control 6.8 x 10(4)+/-8.7 x 10(3) cells/ml vs desoctanoyl ghrelin (10(-9) M) 1.04 x 10(5)+/-7.5 x 10(3) cells/ml; P<0.01). Ghrelin caused a significant increase in phosphorylated ERK 1/2 in immunoblotting, while desoctanoyl ghrelin showed a smaller but also significant stimulatory effect. The positive effect of ghrelin and desoctanoyl ghrelin on [(3)H]thymidine incorporation was abolished by the MAPK kinase inhibitor U0126, the PKC inhibitor GF109203X and the tyrosine kinase inhibitor tyrphostin 23, suggesting that the ghrelin-induced cell proliferation of GH3 cells is mediated both via a PKC-MAPK-dependent pathway and via a tyrosine kinase-dependent pathway. This could also be clearly demonstrated by Western blot analysis, where a transient increase in ERK 1/2 phosphorylation by ghrelin was attenuated by all three inhibitors. CONCLUSION: We have shown a novel role for ghrelin in stimulating the proliferation of a somatotroph pituitary tumour cell line, suggesting that ERK activation is involved in mediating the effects of ghrelin on cell proliferation. Desoctanoyl ghrelin showed a similar effect. As ghrelin has been shown to be expressed in both normal and adenomatous pituitary tissue, locally produced ghrelin may play a role in pituitary tumorigenesis via an autocrine/paracrine pathway.


2001 ◽  
Vol 281 (6) ◽  
pp. G1405-G1412 ◽  
Author(s):  
T. Suzuki ◽  
E. Grand ◽  
C. Bowman ◽  
J. L. Merchant ◽  
A. Todisco ◽  
...  

Helicobacter pyloriand proinflammatory cytokines have a direct stimulatory effect on gastrin release from isolated G cells, but little is known about the mechanism by which these factors regulate gastrin gene expression. We explored whether tumor necrosis factor (TNF)-α and interleukin (IL)-1 directly regulate gastrin gene expression and, if so, by what mechanism. TNF-α and IL-1 significantly increased gastrin mRNA in canine G cells to 181 ± 18% and 187 ± 28% of control, respectively, after 24 h of treatment. TNF-α and IL-1 stimulated gastrin promoter activity to a maximal level of 285 ± 12% and 415 ± 26% of control. PD-98059 (a mitogen-activated protein kinase kinase inhibitor), SB-202190 (a p38 kinase inhibitor), and GF-109203 (a protein kinase C inhibitor) inhibited the stimulatory action of both cytokines on the gastrin promoter. In conclusion, both cytokines can directly regulate gastrin gene expression via a mitogen-activated protein kinase- and protein kinase C-dependent mechanism. These data suggest that TNF-α and IL-1 may play a direct role in Helicobacter pylori-induced hypergastrinemia.


2008 ◽  
Vol 7 (8) ◽  
pp. 1309-1317 ◽  
Author(s):  
Iwona Migdal ◽  
Yulia Ilina ◽  
Markus J. Tamás ◽  
Robert Wysocki

ABSTRACT Cells slow down cell cycle progression in order to adapt to unfavorable stress conditions. Yeast (Saccharomyces cerevisiae) responds to osmotic stress by triggering G1 and G2 checkpoint delays that are dependent on the mitogen-activated protein kinase (MAPK) Hog1. The high-osmolarity glycerol (HOG) pathway is also activated by arsenite, and the hog1Δ mutant is highly sensitive to arsenite, partly due to increased arsenite influx into hog1Δ cells. Yeast cell cycle regulation in response to arsenite and the role of Hog1 in this process have not yet been analyzed. Here, we found that long-term exposure to arsenite led to transient G1 and G2 delays in wild-type cells, whereas cells that lack the HOG1 gene or are defective in Hog1 kinase activity displayed persistent G1 cell cycle arrest. Elevated levels of intracellular arsenite and “cross talk” between the HOG and pheromone response pathways, observed in arsenite-treated hog1Δ cells, prolonged the G1 delay but did not cause a persistent G1 arrest. In contrast, deletion of the SIC1 gene encoding a cyclin-dependent kinase inhibitor fully suppressed the observed block of G1 exit in hog1Δ cells. Moreover, the Sic1 protein was stabilized in arsenite-treated hog1Δ cells. Interestingly, Sic1-dependent persistent G1 arrest was also observed in hog1Δ cells during hyperosmotic stress. Taken together, our data point to an important role of the Hog1 kinase in adaptation to stress-induced G1 cell cycle arrest.


2001 ◽  
Vol 280 (2) ◽  
pp. L354-L362 ◽  
Author(s):  
Pamela M. Lindroos ◽  
Yi-Zhe Wang ◽  
Annette B. Rice ◽  
James C. Bonner

Upregulation of the platelet-derived growth factor (PDGF) receptor-α (PDGFR-α) is a mechanism of myofibroblast hyperplasia during pulmonary fibrosis. We previously identified interleukin (IL)-1β as a major inducer of the PDGFR-α in rat pulmonary myofibroblasts in vitro. In this study, we report that staurosporine, a broad-spectrum kinase inhibitor, upregulates PDGFR-α gene expression and protein. A variety of other kinase inhibitors did not induce PDGFR-α expression. Staurosporine did not act via an IL-1β autocrine loop because the IL-1 receptor antagonist protein did not block staurosporine-induced PDGFR-α expression. Furthermore, staurosporine did not activate a variety of signaling molecules that were activated by IL-1β, including nuclear factor-κB, extracellular signal-regulated kinase, and c-Jun NH2-terminal kinase. However, both staurosporine- and IL-1β-induced phosphorylation of p38 mitogen-activated protein kinase and upregulation of PDGFR-α by these two agents was inhibited by the p38 inhibitor SB-203580. Finally, staurosporine inhibited basal and PDGF-stimulated mitogenesis over the same concentration range that induced PDGFR-α expression. Collectively, these data demonstrate that staurosporine is a useful tool for elucidating the signaling mechanisms that regulate PDGFR expression in lung connective tissue cells and possibly for evaluating the role of the PDGFR-α as a growth arrest-specific gene.


Sign in / Sign up

Export Citation Format

Share Document