scholarly journals Examination of the Maximum Brightness of the Monitor Suitable for Radiological Technologistsʼ Interpretation Assistance and Image Inspection

2021 ◽  
Vol 77 (4) ◽  
pp. 344-350
Author(s):  
Ryosuke Miki ◽  
Takao Osaki ◽  
Hideo Nakagawa ◽  
Masato Kiriki ◽  
Keita Fujikawa ◽  
...  
Author(s):  
T. Ichinokawa ◽  
H. Maeda

I. IntroductionThermionic electron gun with the Wehnelt grid is popularly used in the electron microscopy and electron beam micro-fabrication. It is well known that this gun could get the ideal brightness caluculated from the Lengumier and Richardson equations under the optimum condition. However, the design and ajustment to the optimum condition is not so easy. The gun has following properties with respect to the Wehnelt bias; (1) The maximum brightness is got only in the optimum bias. (2) In the larger bias than the optimum, the brightness decreases with increasing the bias voltage on account of the space charge effect. (3) In the smaller bias than the optimum, the brightness decreases with bias voltage on account of spreading of the cross over spot due to the aberrations of the electrostatic immersion lens.In the present experiment, a new type electron gun with the electrostatic and electromagnetic lens is designed, and its properties are examined experimentally.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2599
Author(s):  
Meng-Xi Mao ◽  
Fang-Ling Li ◽  
Yan Shen ◽  
Qi-Ming Liu ◽  
Shuai Xing ◽  
...  

Phosphorescent iridium(III) complexes have been widely researched for the fabrication of efficient organic light-emitting diodes (OLEDs). In this work, three red Ir(III) complexes named Ir-1, Ir-2, and Ir-3, with Ir-S-C-S four-membered framework rings, were synthesized efficiently at room temperature within 5 min using sulfur-containing ancillary ligands with electron-donating groups of 9,10-dihydro-9,9-dimethylacridine, phenoxazine, and phenothiazine, respectively. Due to the same main ligand of 4-(4-(trifluoromethyl)phenyl)quinazoline, all Ir(III) complexes showed similar photoluminescence emissions at 622, 619, and 622 nm with phosphorescence quantum yields of 35.4%, 50.4%, and 52.8%, respectively. OLEDs employing these complexes as emitters with the structure of ITO (indium tin oxide)/HAT-CN (dipyra-zino[2,3-f,2′,3′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile, 5 nm)/TAPC (4,4′-cyclohexylidenebis[N,N-bis-(4-methylphenyl)aniline], 40 nm)/TCTA (4,4″,4″-tris(carbazol-9-yl)triphenylamine, 10 nm)/Ir(III) complex (10 wt%): 2,6DCzPPy (2,6-bis-(3-(carbazol-9-yl)phenyl)pyridine, 10 nm)/TmPyPB (1,3,5-tri(mpyrid-3-yl-phenyl)benzene, 50 nm)/LiF (1 nm)/Al (100 nm) achieved good performance. In particular, the device based on complex Ir-3 with the phenothiazine unit showed the best performance with a maximum brightness of 22,480 cd m−2, a maximum current efficiency of 23.71 cd A−1, and a maximum external quantum efficiency of 18.1%. The research results suggest the Ir(III) complexes with a four-membered ring Ir-S-C-S backbone provide ideas for the rapid preparation of Ir(III) complexes for OLEDs.


2010 ◽  
Vol 6 (S273) ◽  
pp. 343-346
Author(s):  
Isroil Sattarov ◽  
Nina V. Karachik ◽  
Chori T. Sherdanov ◽  
Azlarxon M. Tillaboev ◽  
Alexei A. Pevtsov

AbstractUsing maximum brightness of coronal bright point's (CBP) as a criterion, we separate them on two categories: dim CBPs, associated with areas of a quiet Sun, and bright CBPs, associated with an active Sun. This study reports on characteristics of two types of CBPs and their evolution.


2012 ◽  
Vol 65 (9) ◽  
pp. 1244 ◽  
Author(s):  
Prashant Sonar ◽  
Sonsoles Garcia Santamaria ◽  
Ting Ting Lin ◽  
Alan Sellinger ◽  
Henk Bolink

The synthesis and characterisation of 2,5-bis(5′-hexyl-[2,2′-bithiophen]-5-yl)pyridine (Th4PY) and its use as a blue emitter in organic light emitting diodes (OLEDs) is reported. Th4PY was synthesised in high yield using a straightforward Suzuki coupling route with commercially available starting materials. As Th4PY is both soluble and has low molecular weight, blue OLEDs were fabricated using both spin-coating and vacuum deposition thin film processing techniques to study the effect of processing on device performance. OLED devices using a spin-coated layer consisting of 4′,4′′-tris(N-carbazolyl)triphenylamine (TCTA) and 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) as a host matrix together with Th4PY as emitter exhibited highly efficient sky-blue emission with a low turn-on voltage of 3 V, a maximum brightness close to 15000 cd m–2 at 8 V, and a maximum luminous efficiency of 7.4 cd A–1 (6.3 lm W–1) with CIE coordinates of x = 0.212, y = 0.320. The device performance characteristics are compared using various matrices and processing techniques. The promising sky-blue OLED performance, solution processability, and ambient stability make Th4PY a promising blue emitter for application in OLEDs.


2012 ◽  
Vol 557-559 ◽  
pp. 1031-1036 ◽  
Author(s):  
Jian Xin Yang ◽  
Xiang Hui Wang

A series of fluorescence compounds, 4-benzofuranyl-1,8-naphthalimides, were prepared through cycloaddition reaction from 4-ethynyl-1,8-naphthalimides and o-iodophenols which catalyzed by a Pd(PPh3)2Cl2 / CuI system under mild conditions. The intermediate material, 4-ethynyl-1,8- naphthalimide, was synthesized from 4-bromo-1,8- naphthalimide and trimethylsilyl- acetylene. The absorption and fluorescence spectra of 4-benzofuranyl-1,8- naphthalimides were studied and the quantum yields were measured. The maximum UV/vis absorption spectra were in the range of 375-400 nm and the maximum emission spectra were in the range of 470-510 nm. The electro- luminescent properties were also mensurated through a doped electroluminescent device which contains 1% 1,8-naphthalimides and 99% CBP (4,4'-N,N'-dicarbazole-biphenyl), It’s shown the maximum brightness reached 3700 cd/ m2 at 22.5V.


2010 ◽  
Vol 97-101 ◽  
pp. 2291-2294
Author(s):  
Rui Hai Ji ◽  
Hai Qing Du ◽  
Xin Liu

Aiming at the problem of effectively recycling waste beverage containers, an automatic green recycling technique based on the optical image inspection is proposed. The basic principle and realization steps of the automatic green recycling technique are expounded. By using the optical image inspection technique and object contour recognition technique, the waste beverage containers are classified from different manufactures. The problem of waste beverage containers automatic recycling is solved, the cost of retailers is reduced and the waste beverage containers are recycled effectively. This automatic green recycling technique is significant for the recycling economy and sustainable development.


Procedia CIRP ◽  
2021 ◽  
Vol 104 ◽  
pp. 559-564
Author(s):  
Yusuke Hida ◽  
Savvas Makariou ◽  
Sachio Kobayashi
Keyword(s):  

1995 ◽  
Vol 115 (3) ◽  
pp. 452-459
Author(s):  
Saburo Okada ◽  
Masaaki Imade ◽  
Hidekazu Miyauchi ◽  
Tetsuhiro Sumimoto ◽  
Hideki Yamamoto

2006 ◽  
Vol 22 (4) ◽  
pp. 331-338
Author(s):  
M. Chang ◽  
Y.-H. Hu ◽  
S.-W. Chau ◽  
K.-H. Lin

AbstractThe mixing behavior of a two-channel micromixer with a circular mixing chamber at four different chamber depths and six different flow rates had been investigated. Experiments were implemented with the mixings of two fluids. An image inspection method using the variance of the image gray level contrast as the measurement parameter to determine the mixing efficiency distribution in these mixers. The steady, three-dimensional and laminar flow fields inside the micromixers were also simulated numerically with a finite volume discretization. Through the numerical integration over the chamber depth, the three-dimensional numerical prediction could be compressed into a two-dimensional result, which could be directly used to compare with the experimental measurements. Experimental results show that the measured mixing efficiency is raised with the increase of chamber depth. The numerical prediction of mixing efficiency agreed qualitatively with those obtained from the experimental measurements, while the ratio of the depth to diameter of the mixing chamber is big enough to eliminate the viscosity effect.


Sign in / Sign up

Export Citation Format

Share Document