scholarly journals Image processing techniques for analyzing CT scan images towards the early detection of lung cancer

2019 ◽  
Vol 15 (8) ◽  
pp. 596-599
Author(s):  
Ayyappan Nagarajan ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 1-5
Author(s):  
Osman Mudathir ◽  
Alaa Elfadel Kamil ◽  
Suha Salah ◽  
Marwa Gamar ◽  
Zeinab Nouraldaem

This paper represents detection of lung cancer using image processing which is followed by image enhancement using three filters. These filters are Gabor, madian and mean filters. Then, image segmentation is applied using a technique called marker controlled watershed with masking that has advantages over other methods in terms of reducing the time needed for detection. On that ground, this method rejoiced with better quality. Finally, an important stage is made to decide whether the lung is infected with cancer or not this stage is called feature extraction .therefore, results were reached with less human efforts.


Author(s):  
Aishwarya .R

Abstract: Lung cancer has been a major contribution to mortality rates world-wide for many years now. There is a need for early diagnosis of lung cancer which if implemented, will help in reducing mortality rates. Recently, image processing techniques have been widely applied in various medical facilities for accurate detection and diagnosis of abnormality in the body images like in various cancers such as brain tumour, breast tumour and lung tumour. This paper is a development of an algorithm based on medical image processing to segment the lung tumour in CT images due to the lack of such algorithms and approaches used to detect tumours. The work involves the application of different image processing tools in order to arrive at the desired result when combined and successively applied. The segmentation system comprises different steps along the process. First, Image preprocessing is done where some enhancement is done to enhance and reduce noise in images. In the next step, the different parts in the images are separated to be able to segment the tumour. In this phase threshold value was selected automatically. Then morphological operation (Area opening) is implemented on the thresholded image. Finally, the lung tumour is accurately segmented by subtracting the opened image from the thresholded image. Support Vector Machine (SVM) classifier is used to classify the lung tumour into 4 different types: Adenocarcinoma(AC), Large Cell Carcinoma(LCC) Squamous Cell Carcinoma(SCC), and No tumour (NT). Keywords: Lung tumour; image processing techniques; segmentation; thresholding; image enhancement; Support Vector Machine; Machine learning;


The mortality rate is increasing among the growing population and one of the leading causes is lung cancer. Early diagnosis is required to decrease the number of deaths and increase the survival rate of lung cancer patients. With the advancements in the medical field and its technologies CAD system has played a significant role to detect the early symptoms in the patients which cannot be carried out manually without any error in it. CAD is detection system which has combined the machine learning algorithms with image processing using computer vision. In this research a novel approach to CAD system is presented to detect lung cancer using image processing techniques and classifying the detected nodules by CNN approach. The proposed method has taken CT scan image as input image and different image processing techniques such as histogram equalization, segmentation, morphological operations and feature extraction have been performed on it. A CNN based classifier is trained to classify the nodules as cancerous or non-cancerous. The performance of the system is evaluated in the terms of sensitivity, specificity and accuracy


The Lung Cancer is a most common cancer which causes of death to people. Early detection of this cancer will increase the survival rate. Usually, cancer detection is done manually by radiologists that had resulted in high rate of False Positive (FP) and False Negative (FN) test results. Currently Computed Tomography (CT) scan is used to scan the lung, which is much efficient than X-ray. In this proposed system a Computer Aided Detection (CADe) system for detecting lung cancer is used. This proposed system uses various image processing techniques to detect the lung cancer and also to classify the stages of lung cancer. Thus the rates of human errors are reduced in this system. As the result, the rate of obtaining False positive and (FP) False Negative (FN) has reduced. In this system, MATLAB have been used to process the image. Region growing algorithm is used to segment the ROI (Region of Interest). The SVM (Support Vector Machine) classifier is used to detect lung cancer and to identify the stages of lung cancer for the segmented ROI region. This proposed system produced 98.5 % accuracy when compared to other existing system


2018 ◽  
Vol 7 (2) ◽  
pp. 687
Author(s):  
R. Lavanya ◽  
G. K. Rajini ◽  
G. Vidhya Sagar

Retinal Vessel detection for retinal images play crucial role in medical field for proper diagnosis and treatment of various diseases like diabetic retinopathy, hypertensive retinopathy etc. This paper deals with image processing techniques for automatic analysis of blood vessel detection of fundus retinal image using MATLAB tool. This approach uses intensity information and local phase based enhancement filter techniques and morphological operators to provide better accuracy.Objective: The effect of diabetes on the eye is called Diabetic Retinopathy. At the early stages of the disease, blood vessels in the retina become weakened and leak, forming small hemorrhages. As the disease progress, blood vessels may block, and sometimes leads to permanent vision loss. To help Clinicians in diagnosis of diabetic retinopathy in retinal images with an early detection of abnormalities with automated tools.Methods: Fundus photography is an imaging technology used to capture retinal images in diabetic patient through fundus camera. Adaptive Thresholding is used as pre-processing techniques to increase the contrast, and filters are applied to enhance the image quality. Morphological processing is used to detect the shape of blood vessels as they are nonlinear in nature.Results: Image features like, Mean and Standard deviation and entropy, for textural analysis of image with Gray Level Co-occurrence Matrix features like contrast and Energy are calculated for detected vessels.Conclusion: In diabetic patients eyes are affected severely compared to other organs. Early detection of vessel structure in retinal images with computer assisted tools may assist Clinicians for proper diagnosis and pathology. 


Sign in / Sign up

Export Citation Format

Share Document