scholarly journals Antimicrobial activity of silymarin mediated zinc oxide and hydroxy apatite nanoparticles against oral pathogens

2020 ◽  
Vol 16 (11) ◽  
pp. 863-868
Author(s):  
S Aravind Kumar ◽  

The nanoparticles such as hydroxyapatite, zinc oxide, titanium dioxide and zirconium nanoparticles have application in dentistry. Therefore, it is of interest to document the antimicrobial activity of silymarin mediated zinc oxide and hydroxy apatite nanoparticles against oral pathogens. Hence, we synthesized hydroxyapatie and zinc oxide nanoparticles with silymarin and characterized by UV-visible spectrophotometer. Data shows that silymarin mediated HAP and ZnO nanoparticles have antimicrobial activity against oral pathogens such as Pseudomonas sp, Staphylococcus aureus, Streptococcus mutans, Enterococcus faecalis and Candida albicans.

Author(s):  
RAMESH A ◽  
SUNDARRAJ P ◽  
BALAMANI J

Objective: The present study was conducted to investigate the cytotoxicity and antimicrobial activity of zinc oxide nanoparticles (ZnO NPs) synthesized as eco-friendly technique from the leaf extract of Ipomoea pes-caprae (L.) R. Br. against human lung adenocarcinoma (A549), brain tumor (U87) cells, and human pathogens Salmonella typhi, Staphylococcus aureus, Klebsiella pneumonia, Pseudomonas aeruginosa, and Bacillus subtilis. Materials and Methods: The work was carried out with varying precursor (plant extract) volume to optimize the synthesis of ZnO NPs and it was confirmed by ultraviolet (UV)-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, scanning electron microscopy, and atomic force microscope (AFM) characterization techniques and evaluate its cytotoxicity activity by 3-(4,5-dimethyl-2- thiazolyl)-2,5-diphenyl--tetrazolium bromide assay method, antimicrobial activity by disk diffusion method. Results: A peak at 320 nm with maximum intensity was observed at temperature of 80°C with pH of 8.0 in UV-visible spectroscopy confirmed the formation of ZnO NPs and we calculate the size of ZnO NPs from XRD data found as 15.8 nm. The FTIR analysis evaluated that the presence of different functional groups is carboxyl, amine, and phenolic compounds of leaves extract which are involved in the reduction of zinc ions and acts as capping the ZnO NPs. AFM microgram confirms that ZnO NPs were in nanorange and spherical in nature. The cytotoxicity activity of A549 and U87 cell lines treated with various concentrations of ZnO NPs showed a dose-dependent increase in cell inhibition and the half maximal inhibitory concentration value was calculated to be 7.8 μg/ml. The antibacterial activity of selected pathogens shows higher zone of inhibition. Conclusion: The present study reveals that synthesized ZnO NPs capping with various bioactive compounds present in the leaf of I. pes-caprae show promising activity of cancer cell lines and antimicrobial agents; hence, further detailed study may lead to develop at a novel phytomedicine for the anticancer and antimicrobial drugs.


2021 ◽  
Vol 14 (4) ◽  
pp. 1813-1820
Author(s):  
Mary Clementia I

The main objective of the present work is to synthesize pure and nickel doped zinc oxide nanoparticles by facile co precipitation technique. The work is confined to study the effect of various weight ratios (0.3, 0.6 ,0.9) % Nickel into Zinc oxide and to witness the drastic changes that occur in its various physical properties such as structural, optical, magnetic from X ray diffraction (XRD), UV visible (ultra violet) spectra, VSM (Vibrating sample magneto meter). XRD analysis reveals the wurtzite hexagonal structure and it is also found that as the doping concentration increases the crystallite size decreases from 4.6 nm to 3.0 nm. SEM results depicts the agglomeration of the particle, the synthesized samples shows both rod and flakes formation when the doping concentration is increased. Morphological changes were analysed TEM (Transmission electron microscope). The enhancement in the optical behaviour were observed and the energy band gap is calculated with the data obtained from UV-Visible spectra and the optical properties shows a tremendous increase as the Ni content increases which proves the sample a suitable candidate for solar cells and photovoltaic devices. Purity of the prepared sample were investigated through EDAX analysis. The hysteresis loop from the VSM analysis elucidate the saturation magnetization and the ferromagnetic behaviour of the sample. X-ray Photoemission Spectroscopy results indicates the presence of several oxygen species adsorbed on the surface. The study is also extended to analyse its anti-microbial effect against Staphylococcus aureus. The cell culture dish of the sample showed a notable resistance against Staphylococcus aureus when the concentration of nickel is increased and could be extended to pharmaceutical applications in treating several skin infections.


2020 ◽  
Vol 26 (6) ◽  
pp. 200454-0
Author(s):  
Sabaoon Shamshad ◽  
Jamshaid Rashid ◽  
Ihsan-ul-haq ◽  
Naseem Iqbal ◽  
Saif Ullah Awan

Multidrug resistance of bacteria is an emerging human health hazard and warrants development of novel antibacterial agents with more effective mode of action. Here, zinc oxide and silver nanomaterials were prepared using Ficus palmata Forssk leaf extract with efficient antibacterial activity. SEM coupled with EDS confirmed the spherical symmetry with average particle diameter 50 to 65 nm while the XRD confirmed crystalline face centered cubic structure of silver and hexagonal crystallize phase of zinc oxide nanoparticles. Antibacterial activity was evaluated for 8 pathogenic bacterial strains including 3 drug resistant pathogenic strains. The nanoparticles showed enhanced growth inhibition for resistant strains in comparison with the broad-spectrum antibiotics i.e. roxithromycin and cefixime. Minimum inhibitory concentration in μg.mL<sup>-1</sup> of silver nanoparticles was found to be as low as 33.3 for resistant Streptococcus haemolyticus; 11.1 for Staphylococcus aureus and E Coli; and 3.7 μg.mL<sup>-1</sup> for resistant Pseudomonas aeruginosa. Similarly, the minimum inhibitory concentration of zinc oxide nanoparticles was found to be 100 μg.mL<sup>-1</sup> against resistant Streptococcus haemolyticus and Staphylococcus aureus; 11.1 μg.mL<sup>-1</sup> for resistant Pseudomonas aeruginosa; and 3.7 μg.mL<sup>-1</sup> against resistant E coli. Ficus palmata Forssk leaf extracts can be explored effectively for synthesizing active antibacterial nanomaterials as a non-toxic and environmentally benign synthesis route.


Author(s):  
Mohd Riyaz Beg ◽  
Shital Ghodinde ◽  
Vidhi Gupta

In this changing world, we all are surrounded by the surmountable risk of getting injured. Amongst various risk factors, major burns are the most distressing and catastrophic. Burn wounds are not easy to heal via natural healing process and ultimately ended up with scar formation. If the degree of burn is high then the loss of tissue and its function is very common. To fasten-up the natural burn wound healing; zinc, an essential trace element is found to be very much effective. But due to its&rsquo; particle size limitation, less contact with wounded cells and tissues, and high inherent toxicity restrict its use. Needlessly, zinc is an element with dual action i.e. both antimicrobial and wound healing it is a prime choice to apply its aptitude in burn wound healing. To overcome the documented limitations zinc has converted to nanoparticle form. Zinc oxide nanoparticles, in particular, have attained ample of interest due to their unique properties and potential antimicrobial activity along with wound healing activity which makes it promising for the healing of topical burn wounds. Plant mediated green synthesis of nano-metal oxide particles is gaining a lot of significance due to its simplicity, eco-friendliness and extensive antimicrobial activity and recommended as an appealing substitute to not only physical methods but also chemical methods avoiding the use of the high rate of toxic chemicals and extreme surroundings. This study includes ZnO NPs role in burn wound healing with Phyto-mediated synthesis methods to provide evidence of their potential applications. Additionally, it provides an overview of traditional methods used for the synthesis of ZnO nanoparticles and characterization techniques to obtain information concerning the size, shape and optical properties along with toxicity and safety concern of ZnO NPs and its biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document