scholarly journals Structural performance test of the Neil Mitchell Housing System:

1968 ◽  
Author(s):  
1999 ◽  
Vol 47 (1) ◽  
pp. 33-40
Author(s):  
J. T'zsér ◽  
M. Mézes

This study was conducted to compare three different methods for calculating scrotal circumference (ASC1, ASC2, ASC3) adjusted to 365 days of age in Charolais, Limousin and Hungarian Fleckvieh young bulls at the end of the self-performance test. Young breeding bulls from three Charolais, Limousin and Hungarian Fleckvieh breeding farms (farm A: n = 40; farm B: n = 9; farm C: n = 11) were used. The young bulls were kept in loose housing system, in small groups, and fed a diet based on maize silage and concentrate. The scrotal circumference of young bulls was measured at the widest part of the scrotum at the beginning and at the end of the test. Significant growth was observed (+13.6 cm; +8.9 cm; +10.5 cm, P < 0.001) in scrotal circumference (SC) for all breeds except the Hungarian Fleckvieh (ASC2-ASC3: 37.5 vs. 37.6 cm). All differences among the means of the measured and adjusted SCs were statistically confirmed at the P < 0.05 level of significance. A moderate to close positive correlation (r = 0.49-0.99) was calculated among the measured SC and the three types of ASC. The results suggest that method I (ASC1) and method II (ASC2) should be used by the breeders for adjusting scrotal circumferences in the practice.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 357
Author(s):  
Ji-Won Jin ◽  
Ki-Weon Kang

A vibration-based energy harvester (VEH) utilizes vibrations originated from various structures and specifically maximizes the displacement of its moving parts, using the resonance between the frequency of external vibration loads from the structure and the natural frequency of VEH to improve power production efficiency. This study presents the procedure to evaluate the structural performance and structural integrity of VEH utilized in a railway vehicle under frequency domain. First of all, a structural performance test was performed to identify the natural frequency and assess the structural response in frequency domain. Then, the static structural analysis was carried out using FE analysis to investigate the failure critical locations (FCLs) and effect of resonance. Finally, we conducted a frequency response analysis to identify the structural response and investigate the structural integrity in frequency domain. Based on these results, the authors assessed the structural performance and integrity of VEHs in two versions.


2018 ◽  
Vol 167 ◽  
pp. 02003
Author(s):  
Ki-Weon Kang ◽  
Ji-Won Jin

This study aims to assess the structural performance and structural integrity of vibration energy harvester (VEH). For this, the structural performance test were conducted to identify the natural frequency and structural response against frequency. And then, static structural analysis was performed using finite element analysis to investigate the failure critical locations (FCLs). Finally, we conducted the frequency response analysis in frequency domain to obtain the structural response with frequency and investigate the structural integrity of VEH. Using the above results, we assessed the structural performance and structural integrity of two types of VEHs.


2012 ◽  
Vol 525-526 ◽  
pp. 593-596
Author(s):  
Sung Tae Kim ◽  
Sung Yong Park ◽  
Keun Hee Cho ◽  
Jeong Rae Cho ◽  
Byung Suk Kim

This study is related to the FRP-concrete composite bridge deck for cable-stayed bridges developed by the Korea Institute of Construction Technology since 2007. This deck disposes a FRP panel at the bottom and is orthotropic owing to its fabrication through pultrusion process. In the cable-stayed bridge applying precast deck, support conditions occur at the cross beam and edge girder. Therefore, need is to verify the performances in the longitudinal and transverse directions when applying the orthotropic deck to cable-stayed bridges. Accordingly, specimens enabling to verify the performance in each direction are fabricated and subject to structural performance test. Based on the test results, the serviceability and applicability of the FRP-concrete composite deck to cable-stayed bridges are evaluated.


2008 ◽  
Vol 35 (10) ◽  
pp. 1163-1176
Author(s):  
Mehdi H.K. Kharrazi ◽  
Salah Eldeib ◽  
Helmut G.L. Prion

Canadian Wooden Dome (CWD) is an innovative orthotropic, monolithic modular sectional building system. The main frame of these structures is built using mill trim ends that are normally chipped or used for finger-jointing. The structure, in comparison to conventional wood-frame single-family housing, has a rapid manufacturing process, and quick, on-site assembly attempts to reduce overall construction time. Presented with these advantages and the uniqueness of the wooden-dome system, a technical study was initiated to investigate the structural performance of the modular wooden dome in earthquake-prone areas and to examine its load resistance to heavy snow. This paper describes the results from a series of static and dynamic load tests conducted on the CWD as part of this study. The test results generally indicated that based on the structural performance of the CWD under static and dynamic loads, the CWD could be an alternative to the conventional wood-frame construction system. The test results are then compared with those obtained from the tests conducted on conventional single-family wood-frame houses as part of the Earthquake 99 (EQ-99) Woodframe House Project at The University of British Columbia. The seismic performance of the CWD was superior to that of the nonengineered housing system and comparable to that of the engineered wood-frame housing system.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Seungho Cho ◽  
Seunguk Na

Reinforced concrete is regarded as one of the ideal structural materials which comprises concrete with high compressive strength and reinforcing bars with high tensile strength. However, concrete has been pointed out that it consumes a large volume of energy and emits a lot of carbon dioxide during its manufacturing. In order to lower such environmental burdens of concrete structures, a number of studies and approaches have been carried out. The voided slab is also suggested as a new method to reduce the environmental burden since voided section of the slab would use less concrete compared with the normal reinforced concrete slab. However, no studies have evaluated the CO2 emissions and environmental performance of voided slabs. The purpose of this study was to evaluate the structural performance of voided slabs and empirically corroborate their environmental influence. The flexural performance test was carried out based on the variables of the depth of slab, types of the void former materials, and the hollowness ratio. In addition, comparison of the emission of CO2 was also performed by considering the hollowness ratio and types of void former materials over the normal reinforced concrete slab. The structural performance of the voided slab was similar or slightly higher than the normal reinforced concrete slab. The yield strength of specimens was increased approximately 10∼30% over the anticipated yield strength. Based on this result, it is considered that the voided slab would be sufficient to structural performance and beneficial to plane planning in buildings. In general, it is considered that the voided slab would be beneficial to both structural and environmental aspects. However, the test results in this research showed that the voided slab would emit more carbon dioxide emissions compared to the normal reinforced concrete slab. The main source of more CO2 emissions in the voided slab was the anchoring materials. In this research, wires were used to fix the void former materials to the reinforcing bars. In order for the voided slab to become a more eco-friendly and sustainable material, new anchoring methods such as use of recycled materials, new void former materials without anchoring, or other eco-friendly materials should be applied to reduce the emission of CO2.


Author(s):  
T. Watanabe ◽  
K. Mizuguchi ◽  
T. Waki ◽  
K. Kohge ◽  
E. Saito ◽  
...  

2011 ◽  
Vol 7 (1) ◽  
pp. 8-14
Author(s):  
Robert Moore ◽  
Susan Gordon-Hickey

The purpose of this article is to propose 4 dimensions for consideration in hearing aid fittings and 4 tests to evaluate those dimensions. The 4 dimensions and tests are (a) working memory, evaluated by the Revised Speech Perception in Noise test (Bilger, Nuetzel, & Rabinowitz, 1984); (b) performance in noise, evaluated by the Quick Speech in Noise test (QSIN; Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004); (c) acceptance of noise, evaluated by the Acceptable Noise Level test (ANL; Nabelek, Tucker, & Letowski, 1991); and (d) performance versus perception, evaluated by the Perceptual–Performance test (PPT; Saunders & Cienkowski, 2002). The authors discuss the 4 dimensions and tests in the context of improving the quality of hearing aid fittings.


Sign in / Sign up

Export Citation Format

Share Document