scholarly journals Interaction of citrus root exudates with plant growth promoting rhizobacteria under abiotic stress conditions

2018 ◽  
Author(s):  
Vicente Vives Peris
2021 ◽  
Vol 12 ◽  
Author(s):  
Pu-Sheng Li ◽  
Wei-Liang Kong ◽  
Xiao-Qin Wu ◽  
Yu Zhang

Salt stress is one of the major abiotic stresses that affects plant growth and development. The use of plant growth-promoting rhizobacteria to mitigcate salt stress damage in plants is an important way to promote crop growth under salt stress conditions. Rahnella aquatilis JZ-GX1 is a plant growth-promoting rhizobacterial strain, but it is not clear whether it can improve the salt tolerance of plants, and in particular, the role of volatile substances in plant salt tolerance is unknown. We investigated the effects of volatile organic compounds (VOCs) from JZ-GX1 on the growth performance, osmotic substances, ionic balance and antioxidant enzyme activities of acacia seedlings treated with 0 and 100mm NaCl and explored the VOCs associated with the JZ-GX1 strain. The results showed that compared to untreated seedlings, seedlings exposed to plant growth-promoting rhizobacterium JZ-GX1 via direct contact with plant roots under salt stress conditions exhibited increases in fresh weight, lateral root number and primary root length equal to approximately 155.1, 95.4, and 71.3%, respectively. Robinia pseudoacacia seedlings exposed to VOCs of the JZ-GX1 strain showed increases in biomass, soil and plant analyser development values and lateral root numbers equal to 132.1, 101.6, and 166.7%, respectively. Additionally, decreases in malondialdehyde, superoxide anion (O2−) and hydrogen peroxide (H2O2) contents and increases in proline contents and superoxide dismutase, peroxidase and glutathione reductase activities were observed in acacia leaves. Importantly, the sodium-potassium ratios in the roots, stems, and leaves of acacia exposed to VOCs of the JZ-GX1 strain were significantly lower than those in the control samples, and this change in ion homeostasis was consistent with the upregulated expression of the (Na+, K+)/H+ reverse cotransporter RpNHX1 in plant roots. Through GC-MS and creatine chromatography, we also found that 2,3-butanediol in the volatile gases of the JZ-GX1 strain was one of the important signaling substances for improving the salt tolerance of plants. The results showed that R. aquatilis JZ-GX1 can promote the growth and yield of R. pseudoacacia under normal and salt stress conditions. JZ-GX1 VOCs have good potential as protectants for improving the salt tolerance of plants, opening a window of opportunity for their application in salinized soils.


2019 ◽  
Vol 6 (1) ◽  
pp. 38-41
Author(s):  
Neelam Yadav ◽  
 Ajar Nath Yadav

Actinobacteria is a phylum and class of Gram-positive bacteria. The phylum Actinobacteria are classified into six classes namely Acidimicrobiia, Actinobacteria, Coriobacteriia, Nitriliruptoria, Rubrobacteria and Thermoleophilia. Members of phylum Actinobacteria are ubiquitous in nature. Actinobacteria can be utilized as biofertilizers for sustainable agriculture as they can enhance plant growth and soil health though different plant growth promoting attributes such as solubilization of phosphorus, potassium and zinc, production of Fe-chelating compounds, phytohormones hormones such indole acetic acids, cytokinin, and gibberellins as well as by biological nitrogen fixation. The Actinobacteria also plays an important role in mitigation of different abiotic stress conditions in plants. The members of phylum Actinobacteria such as Actinomyces, Arthrobacter, Bifidobacterium, Cellulomonas, Clavibacter, Corynebacterium, Frankia, Microbacterium, Micrococcus, Mycobacterium, Nocardia, Propionibacterium, Pseudonocardia, Rhodococcus, Sanguibacter and Streptomyces exhibited the multifarious plant growth promoting attributes and could be used as biofertilizers for crops growing under natural as well as under the abiotic stress conditions for plant growth and soil health for sustainable agriculture.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2205
Author(s):  
Nadège Agbodjato ◽  
Toussaint Mikpon ◽  
Olubukola Babalola ◽  
Durand Dah-Nouvlessounon ◽  
Olaréwadjou Amogou ◽  
...  

Faced with the problems posed by the abusive use of chemical fertilizers and pesticides, it is important to find other alternatives that can guarantee a sustainable and environmentally friendly agriculture. The objective of this study was to evaluate the tolerance of a PGPR (plant growth promoting rhizobacteria) Pseudomonas putida strain to different abiotic stress in in vitro conditions and the synergistic effect of this rhizobacterium in combination with chitosan extracted from crab exoskeletons on the growth of maize in greenhouse conditions. The strain of P. putida was put in culture at different temperatures, pH, and NaCl concentrations to determine its growth. Then, this strain in combination with chitosan extracts were tested for their ability to improve maize growth for 30 days. The results showed that the P. putida strain showed excellent resistance capacities to different salt concentrations, pH, and temperature variations. Moreover, an improvement in plant growth and biomass yield parameters was observed. The highest values of height, diameter, and leaf area were obtained with the plants treated with the combination of chitosan extracted from Cardisoma armatum and P. putida, with increases of 26.8%, 31%, and 55.7%, respectively, compared to the control. This study shows the possibility of using chitosan and rhizobacteria as biostimulants to improve productivity and increase maize yield in a sustainable manner.


Agriculture ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 142 ◽  
Author(s):  
Mohammad Hassan ◽  
John McInroy ◽  
Joseph Kloepper

Rhizodeposits, root exudates, and root border cells are vital components of the rhizosphere that significantly affect root colonization capacity and multiplication of rhizosphere microbes, as well as secretion of organic bioactive compounds. The rhizosphere is an ecological niche, in which beneficial bacteria compete with other microbiota for organic carbon compounds and interact with plants through root colonization activity to the soil. Some of these root-colonizing beneficial rhizobacteria also colonize endophytically and multiply inside plant roots. In the rhizosphere, these components contribute to complex physiological processes, including cell growth, cell differentiation, and suppression of plant pathogenic microbes. Understanding how rhizodeposits, root exudates, and root border cells interact in the rhizosphere in the presence of rhizobacterial populations is necessary to decipher their synergistic role for the improvement of plant health. This review highlights the diversity of plant growth-promoting rhizobacteria (PGPR) genera, their functions, and the interactions with rhizodeposits in the rhizosphere.


Sign in / Sign up

Export Citation Format

Share Document