scholarly journals Molecular Re-identification of Strains of the Colletotrichum acutatum Species Complex Deposited in the NIAS Genebank and Morphological Characteristics of its Member Species

2013 ◽  
Vol 47 (3) ◽  
pp. 295-305 ◽  
Author(s):  
Toyozo SATO ◽  
Jouji MORIWAKI ◽  
Tomoo MISAWA
Plant Disease ◽  
2017 ◽  
Vol 101 (12) ◽  
pp. 2034-2045 ◽  
Author(s):  
Ana López-Moral ◽  
Maria Carmen Raya-Ortega ◽  
Carlos Agustí-Brisach ◽  
Luis F. Roca ◽  
Maria Lovera ◽  
...  

Almond anthracnose is a serious and emerging disease in several countries. All isolates causing almond anthracnose have been assigned to the Colletotrichum acutatum species complex, of which only C. fioriniae and C. godetiae have been associated with the disease to date. Here, we characterized Colletotrichum isolates from almond fruit affected by anthracnose in the Andalusia region. Two Colletotrichum isolates causing olive anthracnose were included for comparison. Morphological characteristics were useful for separating the isolates into groups based on colony morphology. Pathogenicity tests in almond, olive, and apple fruit showed differences in virulence and some degree of pathogenic specialization among isolates. Molecular characterization allowed clear identification of the Colletotrichum isolates tested. The olive isolates were identified as C. godetiae and C. nymphaeae, both previously identified in Andalusian olive orchards. Two phylogenetic species were identified among the almond isolates: C. godetiae, with gray colonies, which is well known in other countries, and C. acutatum, with pink-orange colonies. This species identification differs from those of pink-colony subpopulations described in other countries, which are C. fioriniae. Therefore, this study is also the first report of a new species of Colletotrichum causing almond anthracnose within the C. acutatum species complex.


2017 ◽  
Vol 74 (6) ◽  
pp. 747-756 ◽  
Author(s):  
D. M. Hunupolagama ◽  
N. V. Chandrasekharan ◽  
W. S. S. Wijesundera ◽  
H. S. Kathriarachchi ◽  
T. H. P. S. Fernando ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0233916
Author(s):  
Stefanos Kolainis ◽  
Anastasia Koletti ◽  
Maira Lykogianni ◽  
Dimitra Karamanou ◽  
Danai Gkizi ◽  
...  

Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2569-2576 ◽  
Author(s):  
Rafaele R. Moreira ◽  
Natasha A. Hamada ◽  
Natalia A. Peres ◽  
Louise L. May De Mio

Glomerella leaf spot (GLS) and bitter rot (BR) on apples are often caused by Colletotrichum acutatum in Paraná State, Brazil. GLS control is difficult because of its rapid development, with an incubation period of only 2 days under favorable conditions. Therefore, producers use successive fungicide applications every season; however, failure to control GLS has been commonly reported. The objectives of this study were to determine the sensitivity of isolates of the C. acutatum species complex obtained from apple orchards in Brazil to mancozeb, thiophanate-methyl, and azoxystrobin fungicides. Isolates from the different parts of the plant (leaves, flowers, buds, and twigs) and cultivars (Gala and Eva) showed different levels of sensitivity to mancozeb, thiophanate-methyl, and azoxystrobin. For mancozeb, the frequencies of isolates were 25% highly resistant, 50% low-resistance, and 25% sensitive. For thiophanate-methyl, the frequencies of isolates were 72.2% highly resistant, 11.1% resistant, and 16.7% moderately resistant. For azoxystrobin, the frequencies of isolates were 11.1% highly resistant, 5.6% resistant, and 83.3% sensitive. Interestingly, no mutations in the β-tubulin and cytochrome b genes were observed in any of the isolates resistant to thiophanate-methyl and azoxystrobin fungicides.


Plant Disease ◽  
2021 ◽  
Author(s):  
Marcel Wenneker ◽  
Khanh Pham ◽  
Engelien Kerkhof ◽  
Dalphy O.C. Harteveld

In late summer 2019, a severe outbreak of fruit rot was observed in commercial ‘Pink Lady’ apple orchards (>20 ha in total) in the region Emilia-Romagna (Northern Italy). The symptoms on the fruit appeared as small circular red to brown lesions. Disease incidences of over 50% of the fruits were observed. To isolate the causal agent, 15 affected apples were collected and small portions of fruit flesh were excised from the lesion margin and placed on potato dextrose agar (PDA). The plates were incubated at 20°C in the dark, and pure cultures were obtained by transferring hyphal tips on PDA. The cultures showed light to dark gray, cottony mycelium, with the underside of the culture being brownish and becoming black with age. Conidia (n=20) were cylindrical, aseptate, hyaline, rounded at both ends, and 12.5 to 20.0 × 5.0 to 7.5 μm. The morphological characteristics were consistent with descriptions of Colletotrichum species of the C. gloeosporioides species complex, including C. fructicola (Weir et al. 2012). The identity of two representative isolates (PinkL2 & PinkL3) from different apples was confirmed by means of multi-locus gene sequencing. Genomic DNA was extracted using the LGC Mag Plant Kit (Berlin, Germany) in combination with the Kingfisher method (Waltham, USA). Molecular identification was conducted by sequencing the ITS1/ITS4 region and partial sequences of four other gene regions: chitin synthase (CHS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), and beta-tubulin (TUB). The sequences have been deposited in GenBank under accession numbers MT421924 & MT424894 (ITS), MT424612 & MT424613 (CHS), MT424616 & MT424617 (GAPDH), MT424614 & MT424615 (ACT), and MT424620 & MT424621 (TUB). MegaBLAST analysis revealed that our ITS sequences matched with 100% identity to Colletotrichum fructicola (Genbank JX010177). The CHS, GAPDH, ACT and TUB sequences of both isolates were 100% identical with C. fructicola culture collection sequences in Genbank (JX009807, JX009923, JX009436 and JX010400, respectively), confirming the identity of these isolates as C. fructicola. Koch's postulates were performed with 10 mature ‘Pink Lady’ apples. Surface sterilized fruit were inoculated with 20 μl of a suspension of 105 conidia ml–1 after wounding with a needle. The fruits were incubated at 20˚C at high relative humidity. Typical symptoms appeared within 4 days on all fruit. Mock-inoculated controls with sterile water remained symptomless. The fungus was reisolated and confirmed as C. fructicola by morphology and sequencing of all previously used genes. Until recently the reported causal agents of bitter rot of apple in Europe belong to the Colletotrichum acutatum species complex (Grammen et al. 2019). C. fructicola, belonging to C. gloeosporioides species complex, is known to cause bitter rot of apple in the USA, Korea, Brazil, and Uruguay (Kim et al. 2018; Velho et al. 2015). There is only one report of bitter rot associated with C. fructicola on apple in Europe (France) (Nodet et al. 2019). However, C. fructicola is also the potential agent of Glomerella leaf spot (GLS) of apple (Velho et al. 2015; 2019). To the best of our knowledge this is the first report of C. fructicola on apples in Italy. It is important to stress that the C. gloeosporioides species complex is still being resolved and new species on apple continue to be identified, e.g. C. chrysophilum that is very closely related to C. fructicola (Khodadadi et al. 2020). Given the risks of this pathogen the presence of C. fructicola in European apple orchards should be assessed and management strategies developed.


Plant Disease ◽  
2017 ◽  
Vol 101 (6) ◽  
pp. 1022-1028 ◽  
Author(s):  
Yingjuan Chen ◽  
Wenjun Qiao ◽  
Liang Zeng ◽  
Dahang Shen ◽  
Zhi Liu ◽  
...  

Brown blight disease caused by Colletotrichum species is a common and serious foliar disease of tea (Camellia sinensis). Fungal isolates from several tea plantations causing typical brown blight symptoms were identified as belonging to the Colletotrichum acutatum species complex and the Colletotrichum gloeosporioides species complex based on morphological characteristics as well as DNA analysis of the internal transcribed spacer (ITS) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Colletotrichum acutatum, a new causal agent associated with C. sinensis, showed high phenotypic and genotypic diversity compared with the more commonly reported C. gloeosporioides. Phylogenetic analysis derived from individual and combined ITS and GAPDH sequences clearly clustered C. acutatum and C. gloeosporioides into separate species. Pathogenicity tests validated that both species were causal agents of tea brown blight disease and were highly pathogenic to tea leaves. However, the two groups of C. gloeosporioides with low levels of variability within their ITS and GAPDH regions differed in their virulence. This study reports for the first time the characterization of C. acutatum and C. gloeosporioides causing brown blight disease on tea (Camellia sinensis (L.) O. Kuntze) in China.


2012 ◽  
Vol 73 ◽  
pp. 37-113 ◽  
Author(s):  
U. Damm ◽  
P.F. Cannon ◽  
J.H.C. Woudenberg ◽  
P.W. Crous

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1955
Author(s):  
Anysia Hedy Ujat ◽  
Ganesan Vadamalai ◽  
Yukako Hattori ◽  
Chiharu Nakashima ◽  
Clement Kiing Fook Wong ◽  
...  

The re-emergence of the Fusarium wilt caused by Fusarium odoratissimum (F. odoratissimum) causes global banana production loss. Thirty-eight isolates of Fusarium species (Fusarium spp.) were examined for morphological characteristics on different media, showing the typical Fusarium spp. The phylogenetic trees of Fusarium isolates were generated using the sequences of histone gene (H3) and translation elongation factor gene (TEF-1α). Specific primers were used to confirm the presence of F. odoratissimum. The phylogenetic trees showed the rich diversity of the genus Fusarium related to Fusarium wilt, which consists of F. odoratissimum, Fusarium grosmichelii, Fusarium sacchari, and an unknown species of the Fusarium oxysporum species complex. By using Foc-TR4 specific primers, 27 isolates were confirmed as F. odoratissimum. A pathogenicity test was conducted for 30 days on five different local cultivars including, Musa acuminata (AAA, AA) and Musa paradisiaca (AAB, ABB). Although foliar symptoms showed different severity of those disease progression, vascular symptoms of the inoculated plantlet showed that infection was uniformly severe. Therefore, it can be concluded that the Fusarium oxysporum species complex related to Fusarium wilt of banana in Malaysia is rich in diversity, and F. odoratissimum has pathogenicity to local banana cultivars in Malaysia regardless of the genotype of the banana plants.


Sign in / Sign up

Export Citation Format

Share Document