scholarly journals An integrated approach to improve plant protection against olive anthracnose caused by the Colletotrichum acutatum species complex

PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0233916
Author(s):  
Stefanos Kolainis ◽  
Anastasia Koletti ◽  
Maira Lykogianni ◽  
Dimitra Karamanou ◽  
Danai Gkizi ◽  
...  
2017 ◽  
Vol 74 (6) ◽  
pp. 747-756 ◽  
Author(s):  
D. M. Hunupolagama ◽  
N. V. Chandrasekharan ◽  
W. S. S. Wijesundera ◽  
H. S. Kathriarachchi ◽  
T. H. P. S. Fernando ◽  
...  

Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2569-2576 ◽  
Author(s):  
Rafaele R. Moreira ◽  
Natasha A. Hamada ◽  
Natalia A. Peres ◽  
Louise L. May De Mio

Glomerella leaf spot (GLS) and bitter rot (BR) on apples are often caused by Colletotrichum acutatum in Paraná State, Brazil. GLS control is difficult because of its rapid development, with an incubation period of only 2 days under favorable conditions. Therefore, producers use successive fungicide applications every season; however, failure to control GLS has been commonly reported. The objectives of this study were to determine the sensitivity of isolates of the C. acutatum species complex obtained from apple orchards in Brazil to mancozeb, thiophanate-methyl, and azoxystrobin fungicides. Isolates from the different parts of the plant (leaves, flowers, buds, and twigs) and cultivars (Gala and Eva) showed different levels of sensitivity to mancozeb, thiophanate-methyl, and azoxystrobin. For mancozeb, the frequencies of isolates were 25% highly resistant, 50% low-resistance, and 25% sensitive. For thiophanate-methyl, the frequencies of isolates were 72.2% highly resistant, 11.1% resistant, and 16.7% moderately resistant. For azoxystrobin, the frequencies of isolates were 11.1% highly resistant, 5.6% resistant, and 83.3% sensitive. Interestingly, no mutations in the β-tubulin and cytochrome b genes were observed in any of the isolates resistant to thiophanate-methyl and azoxystrobin fungicides.


Plant Disease ◽  
2017 ◽  
Vol 101 (12) ◽  
pp. 2034-2045 ◽  
Author(s):  
Ana López-Moral ◽  
Maria Carmen Raya-Ortega ◽  
Carlos Agustí-Brisach ◽  
Luis F. Roca ◽  
Maria Lovera ◽  
...  

Almond anthracnose is a serious and emerging disease in several countries. All isolates causing almond anthracnose have been assigned to the Colletotrichum acutatum species complex, of which only C. fioriniae and C. godetiae have been associated with the disease to date. Here, we characterized Colletotrichum isolates from almond fruit affected by anthracnose in the Andalusia region. Two Colletotrichum isolates causing olive anthracnose were included for comparison. Morphological characteristics were useful for separating the isolates into groups based on colony morphology. Pathogenicity tests in almond, olive, and apple fruit showed differences in virulence and some degree of pathogenic specialization among isolates. Molecular characterization allowed clear identification of the Colletotrichum isolates tested. The olive isolates were identified as C. godetiae and C. nymphaeae, both previously identified in Andalusian olive orchards. Two phylogenetic species were identified among the almond isolates: C. godetiae, with gray colonies, which is well known in other countries, and C. acutatum, with pink-orange colonies. This species identification differs from those of pink-colony subpopulations described in other countries, which are C. fioriniae. Therefore, this study is also the first report of a new species of Colletotrichum causing almond anthracnose within the C. acutatum species complex.


2012 ◽  
Vol 73 ◽  
pp. 37-113 ◽  
Author(s):  
U. Damm ◽  
P.F. Cannon ◽  
J.H.C. Woudenberg ◽  
P.W. Crous

Author(s):  
Wafaa Mokhtari ◽  
Mohamed Achouri ◽  
Abdellah Remah ◽  
Noureddine Chtaina ◽  
Hassan Boubaker

In this chapter, the authors introduce two research axes: Part A, nano-biosensors as ad-hoc technologies designed to meet plant diagnostic sensitivity and specificity needs at point of care, and Part B, the study of the interaction of drought and infection stresses in crops investigating bio-control potential antagonists in developing integrated approach (IPM) for disease control measures in crops system. The first part will be revising most used nano-biosensors in plant pathogens detection using different platforms in greenhouses, on-field, and during postharvest. A special focus will be on optical and voltametric immuno/DNA sensors application in plant protection. The last part will present case studies of using nanoparticles functionalized with antibody/DNA for detecting pathogenic Pseudomonas sp, mosaic viruses, Botrytis cinereal, and Fusarium mycotoxins (DON). The second part will be interpreting experimental results of a case study on evaluating bio-control efficacy of local Trichoderma spp. using root dips treatment in Fusarium solani-green beans pathosystem as a model.


2020 ◽  
Vol 8 (2) ◽  
pp. 108-131
Author(s):  
Melaku Alemu

There are many constraints that severely affect the global agricultural production and productivity which include the ever increasing of population growth, degradation of natural resources, climate changes and emerging pests. Among these factors, biotic constraints or pests are known to cause 25-50% or complete loss of plant production. Accordingly, various plant protection technologies have been deployed with the trend of focusing on the use modern biotechnological tools that are proven to be most effective and mandatory. The review covers a wide array of pest management methods ranging from the conventional biological control methods up to molecular breeding techniques. Furthermore, the application of new genetic engineering techniques fueled by new breakthroughs and innovations are the cornerstone of this review. Accordingly, the continuous increasing trend of GM crops cultivation in both crop type and hectare has urged many countries to deploy the technology as a key strategy to enhance their bioeconomy. In fact, plant protection is the discipline that immensely benefit from biotechnology than any other disciplines for ensuring food security and sustainable development. However, in order to fully exploit the enormous potential of biotechnology, appropriate biosafety regulatory frameworks and proper stewardship programs need to be effectively implemented. This integrated approach can promptly help respond to the ever-dynamic threat of pests and hence reliably combat food insecurity and ably contribute to sustainable development. Int. J. Appl. Sci. Biotechnol. Vol 8(2): 108-131


2018 ◽  
Vol 2 (6) ◽  
Author(s):  
Demian F Gomez ◽  
James Skelton ◽  
M Sedonia Steininger ◽  
Richard Stouthamer ◽  
Paul Rugman-Jones ◽  
...  

Abstract The ambrosia beetle Euwallacea fornicatus Eichhoff sensu lato is a complex of genetically divergent emerging pests responsible for damages to tree industries and ecosystems around the world. All lineages within the species complex are currently considered morphologically identical, presenting problems for their delineation and highlighting the shortcomings of species concepts based solely on type-specimen morphology. The objectives of this work were to 1) broaden the geographic sampling of the E. fornicatus complex in Asia, 2) reconstruct relationships between clades and populations, 3) find morphological characters or combinations of characters which are useful in delimiting the genetic lineages of the E. fornicatus species complex, and 4) propose taxonomic delimitation of species where morphology and phylogenetic identity correlate. Our integrated approach using molecular and morphological evidence suggests four clades that differ morphologically, but with overlap, therefore, cytochrome oxidase c subunit I (COI) barcoding remains necessary for assigning specimens to a clade. The following taxonomic changes are proposed: E. fornicatus (Eichhoff 1868) (= ‘Tea Shot Hole Borer Clade a’); E. fornicatior (Eggers 1923), stat. rev. (= ‘Tea Shot Hole Borer Clade b’); E. whitfordiodendrus (Schedl 1942), stat. rev. (= ‘Polyphagous Shot Hole Borer’); and E. kuroshio Gomez and Hulcr, sp. nov. (= ‘Kuroshio Shot Hole Borer’). This approach delivers a practical, evidence-based guidance for species delineation that can address overlapping variation in morphological characters of an emerging pest species complex.


Sign in / Sign up

Export Citation Format

Share Document