scholarly journals Comparing Rates of Rock Weathering and Soil Formation between Two Temperate Forest Watersheds Differing in Parent Rock and Vegetation Type

2019 ◽  
Vol 53 (3) ◽  
pp. 169-179 ◽  
Author(s):  
Susumu S. ABE ◽  
Takahiro HARADA ◽  
Hiroshi OKUMURA ◽  
Toshiyuki WAKATSUKI
2012 ◽  
Vol 7 (No. 4) ◽  
pp. 138-150 ◽  
Author(s):  
V. Penížek ◽  
T. Zádorová

Mountainous areas represent regions with specific soil cover pattern that is naturally given by an altitudinal gradient. The objective of our study was to describe the soil cover development on the altitudinal gradient under changed environment given by man-planted vegetation and acidification. The studied area is characterized by spruce monoculture planting that replaced the original broadleaf natural vegetation and high load of anthropic acidification. The common hypothesis considering the sequence of Dystric Cambisol-Entic Podzol-Haplic Podzol with increasing altitude was not proved. The results of our study indicate that the influence of spruce vegetation causes the occurrence of Haplic Podzols at low altitudes where the natural soil formation does not induce their development. Results showed that the vegetation type can overrule other altitude-related soil-forming factors. The conversion of natural broadleaf and mixed forests to spruce monocultures leads to the expansion of podzolization process to lower altitudes.


2011 ◽  
Vol 10 (4) ◽  
pp. 315-324 ◽  
Author(s):  
Charles S. Cockell

AbstractSynthetic geomicrobiology is a potentially new branch of synthetic biology that seeks to achieve improvements in microbe–mineral interactions for practical applications. In this paper, laboratory and field data are provided on three geomicrobiology challenges in space: (1) soil formation from extraterrestrial regolith by biological rock weathering and/or the use of regolith as life support system feedstock, (2) biological extraction of economically important elements from rocks (biomining) and (3) biological solidification of surfaces and dust control on other planetary surfaces. The use of synthetic or engineered organisms in these three applications is discussed. These three examples are used to extract general common principles that might be applied to the design of organisms used in synthetic geomicrobiology.


2020 ◽  
Vol 8 (3) ◽  
pp. 047-051
Author(s):  
Clinton Aloni ◽  
Chinago Budnuka Alexander

Weathering is a part of geomorphic processes leading to the disintegration and decomposition of rocks and minerals on the earth’s surface as a result of physical and chemical action that leads to the formation of soil being a most vital natural resource of rock weathering. Development of soils in an environment enhances plants dependence on it for growth, and man depends directly or indirectly on plants for food, thus the functions of soil as a fundamental interface, providing an excellent example of the integration among many parts of the earth system. Hence, geomorphology research being based on processes of the earth’s surfacing that result into most of the physical features seen on the face of the earth.


2019 ◽  
Author(s):  
W. Marijn van der Meij ◽  
Arnaud J. A. M. Temme ◽  
Jakob Wallinga ◽  
Michael Sommer

Abstract. Humans have substantially altered soil and landscape patterns and properties due to agricultural use, with severe impacts on biodiversity, carbon sequestration and food security. These impacts are difficult to quantify, because we lack data on long-term changes in soils in natural and agricultural settings and available simulation methods are not suitable to reliably predict future development of soils under projected changes in climate and land management. To help overcome these challenges, we developed the HydroLorica soil-landscape evolution model, that simulates soil development by explicitly modelling the spatial water balance as driver of soil and landscape forming processes. We simulated 14500 years of soil – formation under natural conditions for three scenarios of different rainfall inputs. For each scenario we added a 500-year period of intensive agricultural land use, where we introduced tillage erosion and changed vegetation type. Our results show substantial differences between natural soil patterns under different rainfall input. With higher rainfall, soil patterns become more heterogeneous due to increased tree throw and water erosion. Agricultural patterns differ substantially from the natural patterns, with higher variation of soil properties over larger distances and larger correlations with terrain position. In the natural system, rainfall is the dominant factor influencing soil variation, while for agricultural soil patterns landform explains most of the variation simulated. The cultivation of soils thus changed the dominant factors and processes influencing soil formation, and thereby also increased predictability of soil patterns. Our study highlights the potential of soil-landscape evolution modelling for simulating past and future developments of soil and landscape patterns. Our results confirm that humans have become the dominant soil forming factor in agricultural landscapes.


1998 ◽  
Vol 215 (1-2) ◽  
pp. 101-111 ◽  
Author(s):  
Luděk Minařı́k ◽  
Anna Žigová ◽  
Jiřı́ Bendl ◽  
Petr Skřivan ◽  
Martin Št'astný

Sign in / Sign up

Export Citation Format

Share Document