haplic podzol
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 1)

Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 953 ◽  
Author(s):  
Agnieszka Wolińska ◽  
Agnieszka Kuźniar ◽  
Anna Gałązka

The main goal of the study was to determine the biodiversity of bacteria and their metabolic profile in the rhizosphere of four winter wheat (Triticum aestivum L.) varieties (Hondia, Nordkap, Rotax, Tytanika) cultivated in Haplic Podzol soil in a no-tillage system. Two techniques, i.e., next generation sequencing (NGS, meta-barcoding of 16S rRNA community) and community level physiological profiling (CLPP), were applied to obtain a holistic picture of biodiversity. The basic soil chemical parameters (acidity, redox potential, carbon content, forms of nitrogen, and phosphorus) were also determined. It was found that the rhizospheric microbiome (at the genus level) of cv. Hondia and Rotax were significantly different from that present in the other cultivars studied. The CLPP technique demonstrated that microbial metabolic activity depended on both the type of substrate and wheat cultivars. Carbohydrates and carboxylic acids were the most easily utilized compounds in all rhizospheric soils. The principal component analysis (PCA) evidenced that the rhizospheric soils of Rotax and Nordkap were characterized by a higher functional activity (strong correlation with the Shannon-Wiener index, the Richness index, and utilization of hydrocarbons) than those of Hondia and Tytanika.


2019 ◽  
Vol 74 (3) ◽  
pp. 19-32 ◽  
Author(s):  
JACEK JULIAN PRANAGAL ◽  
DOROTA TOMASZEWSKA-KROJAŃSKA ◽  
HALINA SMAL ◽  
SŁAWOMIR LIGĘZA

In the years 2014–2017, a field experiment was carried out, in which two types of waste were applied to soil. One of them was mineral waste – carboniferous rock from a hard coal mine, and the other – organic waste – post-fermentation sludge from agricultural biogas-producing plant. The experiment was an example of an action, in which soil management was associated with their drainage effects on the soil. The waste was applied to the light soil of low utility value, included in the V bonitation class (in polish soil quality classification) and the 6th complex of agricultural suitability (weak rye). According to the WRB classification, it was Haplic Podzol (PZha) developed from the post-glacial sand. The aim of the study was to analyze changes in soil compaction caused by a single introduction of waste. During the four-year study (2014–2017), the durability of these changes was also observed. It was found that the best effects of reducing the soil compaction were obtained as a result of the combined application of two wastes: carboniferous rock and post-fermentation sludge. Introduction of waste into the soil was also permanent, as differences resulting from the soil management continued in the fourth year of the experiment.


2017 ◽  
Vol 174 ◽  
pp. 92-103 ◽  
Author(s):  
Jacek Pranagal ◽  
Patryk Oleszczuk ◽  
Dorota Tomaszewska-Krojańska ◽  
Piotr Kraska ◽  
Krzysztof Różyło

2016 ◽  
Vol 27 (3) ◽  
pp. 1-7
Author(s):  
Grażyna Porębska ◽  
Apolonia Ostrowska

AbstractThe aim of this research was to assess the relationships between exchangeable and water-soluble cations in forest soil types. Three dominant soil types were distinguished on studied plots: Haplic Podzol, Dystric Arenosol and Dystric Cambisol. Ca, Mg, K, Na and Al in soil sorption complex and soil water extracts were determined. The differentiation of the ionic composition of soil sorption complex and soil water extracts within a soil type and amongst soil types was presented. The sum of cations in the soil and water extracts was the highest in Dystric Cambisol and the lowest in Haplic Podzol. Ca is a dominant cation in soil and soil water extracts in organic horizon, whilst Al is dominant in mineral soil horizons. The Ca/Al and the base cations to Al (BC/Al) molar ratios increased in the sequence of soils: Haplic Podzol < Dystric Arenosol < Dystric Cambisol. The parent material, soil-forming processes and vegetation cover affected the Ca/Al and BC/Al ratios.


2012 ◽  
Vol 7 (No. 4) ◽  
pp. 138-150 ◽  
Author(s):  
V. Penížek ◽  
T. Zádorová

Mountainous areas represent regions with specific soil cover pattern that is naturally given by an altitudinal gradient. The objective of our study was to describe the soil cover development on the altitudinal gradient under changed environment given by man-planted vegetation and acidification. The studied area is characterized by spruce monoculture planting that replaced the original broadleaf natural vegetation and high load of anthropic acidification. The common hypothesis considering the sequence of Dystric Cambisol-Entic Podzol-Haplic Podzol with increasing altitude was not proved. The results of our study indicate that the influence of spruce vegetation causes the occurrence of Haplic Podzols at low altitudes where the natural soil formation does not induce their development. Results showed that the vegetation type can overrule other altitude-related soil-forming factors. The conversion of natural broadleaf and mixed forests to spruce monocultures leads to the expansion of podzolization process to lower altitudes.


2012 ◽  
Vol 26 (4) ◽  
pp. 401-406 ◽  
Author(s):  
A. Walkiewicz ◽  
P. Bulak ◽  
M. Brzeziñska ◽  
T. Włodarczyk ◽  
C. Polakowski

Abstract The kinetic parameters of methane oxidation in three mineral soils were measured under laboratory conditions. Incubationswere preceded by a 24-day preincubationwith 10%vol. of methane. All soils showed potential to the consumption of added methane. None of the soils, however, consumed atmospheric CH4. Methane oxidation followed the Michaelis-Menten kinetics, with relatively low values of parameters for Eutric Cambisol, while high values for Haplic Podzol, and especially for Mollic Gleysol which showed the highest methanotrophic activity and much lower affinity to methane. The high values of parameters for methane oxidation are typical for organic soils and mineral soils from landfill cover. The possibility of the involvement of nitrifying microorganisms, which inhabit the ammonia-fertilized agricultural soils should be verified.


Clay Minerals ◽  
2002 ◽  
Vol 37 (2) ◽  
pp. 351-366 ◽  
Author(s):  
M. Egli ◽  
R. Zanelli ◽  
G. Kahr ◽  
A. Mirabella ◽  
P. Fitze

AbstractTwo soils, a haplic Podzol and a dystric Cambisol, developed from post-glacial tills, were studied with respect to their soil chemistry and clay mineralogy. Although the state factors (age, geology, topography, climate) of soil formation were almost identical, two different types developed. The E horizon of the Podzol contained more smectite, characterized by a montmorillonite-beidellitemixed phase. The neoformation of smectite could be traced back to the weathering of mica and chlorite. The Podzol had less hydroxy-interlayered smectite (HIS) in the surface horizons than the Cambisol. A larger amount of chelating compounds in the E horizon of the Podzol either transformed HIS into smectites or inhibited the formation of HIS and favoured the formation of smectites. The physical structure of the soil material is believed to be the most important factor in the different modes of soil evolution. The greater abundance of coarse pores in the topsoil at the Podzol site probably led to a faster eluviation of base cations, a different vegetation at ground level, and, consequently, to a faster soil evolution with the formation of spodic horizons.


Sign in / Sign up

Export Citation Format

Share Document