NUMERICAL STUDY OF DEPOSITION FEATURES OF DEBRIS FLOW WITH CONSIDERATION OF UNCERTAINTY IN MATERIAL PROPERTIES

2021 ◽  
Vol 26 (4) ◽  
pp. 107-114
Author(s):  
S.G. Lee ◽  
S. Lee
2012 ◽  
Vol 154 (A2) ◽  

This study aims at studying different configurations of the stiffened panels in order to identify robust configurations that would not be much sensitive to the imprecision in boundary conditions that can exist in experimental set ups. A numerical study is conducted to analyze the influence of the stiffener’s geometry and boundary conditions on the ultimate strength of stiffened panels under uniaxial compression. The stiffened panels with different combinations of mechanical material properties and geometric configurations are considered. The four types of stiffened panels analysed are made of mild or high tensile steel and have bar, ‘L’ and ‘U’ stiffeners. To understand the effect of finite element modelling on the ultimate strength of the stiffened panels, four types of FE models are investigated in FE analysis including 3 bays, 1/2+1+1/2 bays, 1+1 bays and 1 bay with different boundary conditions.


Materials ◽  
2017 ◽  
Vol 10 (9) ◽  
pp. 1067 ◽  
Author(s):  
Matthias Neuner ◽  
Tobias Cordes ◽  
Martin Drexel ◽  
Günter Hofstetter

2020 ◽  
Vol 25 (4) ◽  
pp. 34-42
Author(s):  
S.G. Lee ◽  
S. Lee ◽  
J.Y. Lee ◽  
J.A. Um ◽  
W.H. Yi

2014 ◽  
Vol 251 ◽  
pp. 15-24 ◽  
Author(s):  
K. Li ◽  
S.B. Kuang ◽  
R.H. Pan ◽  
A.B. Yu

2016 ◽  
Vol 23 (3) ◽  
pp. 1037-1047 ◽  
Author(s):  
M. Keikhaie ◽  
M.R. Movahhedy ◽  
J. Akbari ◽  
H. Alemohammad

2017 ◽  
Author(s):  
Albrecht v. Boetticher ◽  
Jens M. Turowski ◽  
Brian W. McArdell ◽  
Dieter Rickenmann ◽  
Marcel Hürlimann ◽  
...  

Abstract. Here we present validation tests of the fluid dynamic solver presented in in v. Boetticher et al. (2016), simulating both laboratory-scale and large-scale debris-flow experiments. The new solver combines a Coulomb viscosplastic rheological model with a Herschel-Bulkley model based on material properties and rheological characteristics of the analysed debris flow. For the selected experiments in this study, all necessary material properties were known – the content of sand, clay (including its mineral composition) and gravel (including its friction angle) as well as the water content. We show that given these measured properties, two model parameters are sufficient for calibration, and a range of experiments with different material compositions can be reproduced by the model without recalibration. One calibration parameter, the Herschel–Bulkley exponent, was kept constant for all simulations. The model validation focuses on different case studies illustrating the sensitivity of debris flows to water and clay content, channel curvature, channel roughness and the angle of repose. We characterize the accuracy of the model using experimental observations of flow head positions, front velocities, run-out patterns and basal pressures.


Life ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 316
Author(s):  
Jafar A. Mehr ◽  
Heather E. Moss ◽  
Hamed Hatami-Marbini

Flattening of the posterior eye globe in the magnetic resonance (MR) images is a sign associated with elevated intracranial pressure (ICP), often seen in people with idiopathic intracranial hypertension (IIH). The exact underlying mechanisms of globe flattening (GF) are not fully known but mechanical factors are believed to play a role. In the present study, we investigated the effects of material properties and pressure loads on GF. For this purpose, we used a generic finite element model to investigate the deformation of the posterior eyeball. The degree of GF in numerical models and the significance of different mechanical factors on GF were characterized using an automated angle-slope technique and a statistical measure. From the numerical models, we found that ICP had the most important role in GF. We also showed that the angle-slope graphs pertaining to MR images from five people with high ICP can be represented numerically by manipulating the parameters of the finite element model. This numerical study suggests that GF observed in IIH patients can be accounted for by the forces caused by elevation of ICP from its normal level, while material properties of ocular tissues, such as sclera (SC), peripapillary sclera (PSC), and optic nerve (ON), would impact its severity.


Sign in / Sign up

Export Citation Format

Share Document