scholarly journals Influence of herbicide on plants in connection with formation of arbuscular mycorrhizal symbiosis

2018 ◽  
Vol 23 ◽  
pp. 369-373
Author(s):  
Zh. Z. Guralchuk ◽  
A. M. Sychuk ◽  
O. V. Gumenyuk

Aim. The aim of the work is to analyze the available literature data on the effect of herbicides on the formation of mycorrhizal symbiosis. Results. The article gives a brief overview of the influence of herbicides with different mechanism of action on the formation and functioning of arbuscular mycorrhizal symbiosis. The direct and indirect effects of herbicides on the AM fungi, the different selectivity of AM fungi to herbicides and other factors influencing the effect of herbicides on biodiversity of AM fungi and the formation of mycorrhizal symbiosis are considered. Conclusions. Herbicides with different mechanism of action can have a significant effect on the diversity of AM fungi present in the soil, the formation and functioning of mycorrhizal symbiosis. Their effect on the AM fungi can be either direct or indirect due to the influence on the host plant. AM fungi, in turn, can also influence the selectivity of the plant to herbicides. Studies on the effect of herbicides on mycorrhizal symbiosis may be important for increasing the herbicide efficiency. Keywords: herbicides, arbuscular mycorrhizal fungi, mycorrhizal symbiosis.

2011 ◽  
Vol 23 (1) ◽  
pp. 79-89 ◽  
Author(s):  
Alessandro C. Ramos ◽  
Arnoldo R. Façanha ◽  
Livia M. Palma ◽  
Lev A. Okorokov ◽  
Zilma M.A. Cruz ◽  
...  

The 450-million-year-old interaction between the majority of land plants and mycorrhizal fungi is one of the most ancient, abundant, and ecologically important symbiosis on earth. The early events in the evolution of mycorrhizal symbioses seem to have involved reciprocal genetic changes in ancestral plants and free-living fungi. new data on the mechanism of action of specific signaling molecules and how it influence and is influenced by the membrane ions fluxes and cytoplasm ion oscillations which integrate the symbiotic ionome are improving our understanding of the molecular bases of the mycorrhization process. This mini-review will highlight topics regarding what is known about the ionome and ionic communication in the arbuscular mycorrhizal symbiosis focusing on the signals involved in the development of symbioses. Here we present an overview integrating the available data with the prospects of the research in the field.


2015 ◽  
Vol 43 (2) ◽  
pp. 488-493
Author(s):  
Zhaoyong SHI ◽  
Xubin YIN ◽  
Bede MICKAN ◽  
Fayuan WANG ◽  
Ying ZHANG ◽  
...  

Arbuscular mycorrhiza (AM) fungi are considered as an important factor in predicting plants and ecosystem responses to climate changes on a global scale. The Tibetan Plateau is the highest region on Earth with abundant natural resources and one of the most sensitive region to climate changes. To evaluate the complex response of arbuscular mycorrhizal fungi colonization and spore density to climate changes, a reciprocal translocation experiment was employed in Tibetan Plateau. The reciprocal translocation of quadrats to AM colonization and spore density were dynamic. Mycorrhizal colonization frequency presented contrary changed trend with elevations of quadrat translocation. Colonization frequency reduced or increased in majority quadrats translocated from low to high or from high to low elevation. Responses of colonization intensity to translocation of quadrats were more sensitive than colonization frequency. Arbuscular colonization showed inconsistent trend in increased or decreased quadrat. Vesicle colonization decreased with changed of quadrat from low to high elevations. However, no significant trend was observed. Although spore density was dynamic with signs of decreasing or increasing in translocated quadrats, the majority enhanced and declined respectively in descent and ascent quadrat treatments. It is crucial to understand the interactions between AM fungi and prairie grasses to accurately predict effects of climate change on these diverse and sensitive ecosystems. This study provided an opportunity for understanding the effect of climate changes on AM fungi.


2007 ◽  
Vol 64 (4) ◽  
pp. 393-399 ◽  
Author(s):  
Milene Moreira ◽  
Dilmar Baretta ◽  
Siu Mui Tsai ◽  
Sandra Maria Gomes-da-Costa ◽  
Elke Jurandy Bran Nogueira Cardoso

Araucaria angustifolia (Bert.) O. Ktze. is an endangered Brazilian coniferous tree that has been almost exterminated in the native areas because of uncontrolled wood exploitation. This tree has been shown to be highly dependent on arbuscular mycorrhizal fungi (AMF) and, therefore, AMF may be essential for forest sustainability and biological diversity. Root colonization, density and diversity of AMF spores were assessed in two Araucaria forest stands at the State Park of Alto Ribeira (PETAR), at two sampling dates: May and October. A comparison was made between a mature native stand composed of Araucaria trees mixed into a variety of tropical trees and shrubs, without any sign of anthropogenic interference (FN) and an Araucaria stand planted in 1987 (R), which has been used as a pasture. Assessments included percent root colonization, AMF spore numbers and species richness, Simpson's dominance index (Is), and Shannon's diversity index (H). Mycorrhizal root colonization did not differ between ecosystems in May. In October, however, the native stand (FN) presented a higher colonization than the planted forest (R), and the root colonization was more intense than in May. When considering both sampling periods and forests, 27 species of AM fungi, with higher numbers of spores in FN than in R were found. Canonical discriminant analysis (CDA) indicated Shannon's diversity index as the ecological attribute that contributed the most to distinguish between forest ecosystems, with higher value of H in FN in relation to R. CDA showed to be a useful tool for the study of ecological attributes.


2012 ◽  
Vol 77 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Anna Lisek ◽  
Lidia Sas Paszt ◽  
Beata Sumorok

Summary In organic farming, mineral fertilizers are replaced by various preparations to stimulate plant growth and development. Introduction of new biopreparations into horticultural production requires an assessment of their effects on the growth and yielding of plants. Among the important indicators of the impact on plants of beneficial microorganisms contained in bioproducts is determination of their effectiveness in stimulating the growth and yielding of plants. Moreover, confirmation of the presence of arbuscular mycorrhizal (AM) fungi in the roots and plant growth promoting rhizobacteria (PGPR) in the rhizosphere is also necessary. In addition to conventional methods, molecular biology techniques are increasingly used to allow detection and identification of AM fungi in plant roots. The aim of this study was identification and initial taxonomic classification of AM fungi in the roots of ‘Elkat’ strawberry plants fertilized with various biopreparations using the technique of nested PCR. Tests were performed on DNA obtained from the roots of ‘Elkat’ strawberry plants: not fertilized, treated with 10 different biopreparations, or fertilized with NPK. Amplification of the large subunit of ribosomal gene (LSU rDNA) was carried out using universal primers, and then, in the nested PCR reaction, primers specific for the fungi of the genera Glomus, Acaulospora, and Scutellospora were used. Colonization of strawberry roots by arbuscular mycorrhizal fungi was determined on the basis of the presence of DNA fragments of a size corresponding to the types of the fungi tested for. As a result of the analyses, the most reaction products characterizing AM fungi were found in the roots of plants treated with the preparation Florovit Eko. The least fragments characteristic of AM fungi were detected in the roots of plants fertilized with NPK, which confirms the negative impact of mineral fertilizers on the occurrence of mycorrhizal fungi in the roots of strawberry plants. The roots of plants fertilized with Tytanit differed from the control plants by the presence of one of the clusters of fungi of the genus Glomus and by the absence of a cluster of fungi of the genus Scutellospora. In the roots of plants treated with other biopreparations there were reaction products indicating the presence of fungi of the genera Glomus, Scutellospora and Acaulospora, like in the roots of the control plants. The results will be used to assess the suitability of microbiologically enriched biopreparations in horticultural production.


2012 ◽  
Vol 518-523 ◽  
pp. 5381-5384
Author(s):  
Song Mei Shi ◽  
Bo Tu ◽  
Dai Jun Liu ◽  
Xiao Hong Yang

Physic nut (Jatropha curcas Linn., Euphorbiaceae) is one of the hottest biomass energy plant studied by scientists. This paper first reviewed the symbiosis relationship between physic nut and arbuscular mycorrhizal fungi. The researches have showed that diversity of arbuscular mycorrhizal fungi (AMF) exists around the rhizosphere of physic nut. The AMF hyphae colonize root tips of physic nut to develop arbuscular mycorrhizae. The construction of mycorrhizal symbiosis relationship improves the nutritional absorption, promotes the growth and development of seedlings, and enhance the stress tolerance capacity of physic nut. This paper also displays a prospect for mycorrhizal physic nut research in the future, such as mycorrhizal system, the molecular mechanism for stress resistance and gene engineering. As an important resource of biomass energy, mycorrhizal physic nut has a huge exploitation potential and practical value.


2013 ◽  
Vol 281 ◽  
pp. 664-669
Author(s):  
En Wu ◽  
Guo Rong Xin ◽  
Kazuo Sugawara

With the aggravation of volcanic ash Andosol acidification, artificial forage grass Dactylis glomerata L. gradual degradation, replaced by weed plant Anthoxanthum odoratum L., but the mechanism is unclear. In order to reveal the mechanism, this study used Andosol soil as matrix, explored the effects of arbuscular mycorrhizal fungi on D. glomerata and A. odoratum at different pH gradients in acidic Andosol by glasshouse experiment. The results show that the mycorrhizal colonization of D. glomerata strongly affected by soil pH, but the A. odoratum was not yet. The mycorrhizal symbiosis led to a positive effect on growth and P uptake of D. glomerata and A. odoratum. Consider to invasion and expansion of A. odoratum in severity acidic pasture is origin of this specificity on arbuscular mycorrhizal symbiosis in acidic soil other than D. glomerata.


ZOOTEC ◽  
2017 ◽  
Vol 37 (1) ◽  
pp. 167
Author(s):  
Rifa E. Ansiga ◽  
A. Rumambi ◽  
D. A. Kaligis ◽  
I. Mansur ◽  
W. Kaunang

EXPLORATION OF ARBUSCULAR MYCORRHIZAL (AM) FUNGI IN FORAGE RHIZOSPHERES. This study aimed to determine the diversity of Arbuscular Mycorrhizal Fungi (AMF) in several kinds of hybrid forages Rhizospheres, either in grasses or legumes. Soil samples were taken from three different locations, consisted of: Mapanget (forages type: Leucaena leucocepala, Sorghum varieties numbu, Penicettum purpureum cv. Mott), Tateli (forages type: calothyrsus Calliandra, Gliricidia sepium) and Campus of UNSRAT, Manado (forage type: King grass). The soil samples which taken from forages rhizospheres were sieved using Brundrett method and then centrifuged.  Thereafter, isolation and identification of spore were carried out based on spore morphology character, involves: shape, size, color, hyphae attachment, and ornament. Extraction and identification of spores on six types of rhizosphere were found 34 different types of AMF spores in shape and color. In grass, it was found three types of spores, i.e.: Glomus, Acaulospora, and Sclerocystis, meanwhile in leguminous just one type of spore was found, i.e.: Glomus. The difference of rhizosphere in grass and leguminosae resulted in different types of spores, where Sclerocystis and Acaulospora are found in grasses, on the contrary Sclerocystis and Acaulospora are not found in leguminosae. Based on the number of spores of AMF, it seemed that Glomus types found to have the most number, while Sclerocystis and Acaulospora had the lowest number of spores found. Key words: Exploration, Arbuscular Mycorrhizal Fungi (AMF), Grass, Legume, Spores


2021 ◽  
pp. 339-355
Author(s):  
Michel Ruiz Sánchez ◽  
Juan Adriano Cabrera Rodríguez ◽  
José M. Del'Anico Rodríguez ◽  
Yaumara Muñoz Hernández ◽  
Ricardo Aroca Álvarez ◽  
...  

Introduction. The water deficit negatively affects rice plants and limits their productivity. Arbuscular mycorrhizal symbiosis has been shown to improve rice productivity in drought conditions. Objective. To propose a new categorization for the state of water stress of rice plants inoculated (AM) or not with arbuscular mycorrhizal fungi (nonAM) and exposed to water deficit (D) during the vegetative phase. Materials and methods. The experiment was carried out under controlled greenhouse conditions during the years 2009 and 2010 at the Zaidín Experimental Station, Granada, Spain. The rice transplantation was carried out fourteen days after germination to pots with a 5 cm water sheet and at 30, 40, or 50 days after transplantation (DAT) they were subjected to water deficit during a period of 15 days, at which time the water sheet was restored. The control treatment was maintained throughout the cycle under flood conditions (ww). Evaluations were performed at 45, 55, 65 DAT and after recovery at 122 DAT. The harvest was carried out at 147 DAT. Results. The reduction in water supply demonstrated water stress in the plants, manifested by the decrease in the water potential of the leaves. Arbuscular mycorrhizal symbiosis always favored the water status of the plant. Four categories of water status of plants were proposed taking into account water potentials and agricultural yield: no stress (≥-0.67 MPa); light stress (<-0.67 to -1.20 MPa); moderate stress (<-1.20 to -1.60 MPa), and severe stress (<-1.60 MPa). Conclusion. The categorization of stress due to the water deficit is a tool of high scientific value for the specific case of rice, since this plant has the capacity to adapt to tolerate the presence of a sheet of water throughout its biological cycle and is highly susceptible to water deficit.


Sign in / Sign up

Export Citation Format

Share Document