scholarly journals Simulation Analysis of a Complex Infiltration and Drainage System with Pipe Flow : A Case Study from the Makabe Region of the Main Okinawa Island, Japan

2013 ◽  
Vol 18 (2) ◽  
pp. 17-27
Author(s):  
Genji Kurima ◽  
Yuei Nakama ◽  
Shoji Inoue ◽  
Masashi Konoshima ◽  
Bixia Chen
1997 ◽  
Vol 36 (8-9) ◽  
pp. 379-384
Author(s):  
Sveinn T. Thorolfsson

This paper describes a case study on a new alternative drainage system for urban stormwater management, the so-called “Sandsli-system”. The aim of this study is to evaluate the Sandsli system and the effects of the solution on ground water conditions. The study is carried out in the Sandsli research catchment in Bergen, Norway. The idea behind the “Sandsli-system is not to mix the polluted and the clean stormwater combined with a source control for both stormwater quantity and quality. The clean stormwater is percolated as quickly as possible, while the polluted stormwater is collected and conducted to an appropriate site for disposal or treatment. The Sandsli-system was developed as an alternative drainage system to the conventional drainage system. The system has been functioning satisfactorily since 1981 to date. The advantages of the use of the Sandsli-system is highlighted i.e. recharging the stormwater to the ground water. The Sandsli-system is appropriate to locations with climate and geology similar to that found in the coastal part of Norway


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1886
Author(s):  
Arezoo Zahediasl ◽  
Amin E. Bakhshipour ◽  
Ulrich Dittmer ◽  
Ali Haghighi

In recent years, the concept of a centralized drainage system that connect an entire city to one single treatment plant is increasingly being questioned in terms of the costs, reliability, and environmental impacts. This study introduces an optimization approach based on decentralization in order to develop a cost-effective and sustainable sewage collection system. For this purpose, a new algorithm based on the growing spanning tree algorithm is developed for decentralized layout generation and treatment plant allocation. The trade-off between construction and operation costs, resilience, and the degree of centralization is a multiobjective problem that consists of two subproblems: the layout of the networks and the hydraulic design. The innovative characteristics of the proposed framework are that layout and hydraulic designs are solved simultaneously, three objectives are optimized together, and the entire problem solving process is self-adaptive. The model is then applied to a real case study. The results show that finding an optimum degree of centralization could reduce not only the network’s costs by 17.3%, but could also increase its structural resilience significantly compared to fully centralized networks.


2021 ◽  
Vol 104 ◽  
pp. 47-56
Author(s):  
Rossana Margaret Kadar Yanti ◽  
Oryza Lhara Sari ◽  
Rizjal Wahyu

Two main building Kalimantan Institute of Technology was established on an area of 3500 m2 on October 6, 2014 which serves as the infrastructure for teaching and learning activities of students. The rapid increase in the number of students each year results in an increase in the number of buildings as facilities for teaching and learning. This is the background for the development of the Kalimantan Institute of Technology area by adding five more lecture buildings to support teaching and learning activities for 3500 students. The expansion area for five more lecture buildings is currently under construction in the area of ​​the Faculty of Mathematics and Natural Sciences. The function of the land area has been change due to building construction resulted in an increase in runoff discharge. This condition certainly affects the region if not handled properly. Increased runoff discharge will affect inundation or flooding in the area if it is not equipped with a drainage system as needed. This research is one alternative solution given. This research is in the form of a study on the implementation of a drainage master plan that aims to obtain drainage dimensions such as drainage width, drainage length and drainage depth by observing runoff due to rainwater using the concept of environmentally friendly drainage. The research obtained from the dimensions of tertiary canals with dimensions of 0.10-0.30 meters, secondary channels 0.30-0.45 meters and primary channels 0.35-0.70 meters with the discharge area of ​​the Faculty of Mathematics and Natural Sciences ITK is 1.18 m3/ sec.


2018 ◽  
Vol 878 ◽  
pp. 89-94 ◽  
Author(s):  
Er Lei Wang

Implementing monitoring over construction process of old bridge’s reinforcement serves as an important measure to ensure construction quality and safety and realize the goal of reinforcement. This paper, with a case study of the maintenance and reinforcement project of Zhicheng Yangtze River Bridge (steel truss highway-railway combined bridge), adopted MIDAS to establish finite element analysis model, and with stress and deformation as monitoring parameters, completed the construction monitoring work, numerical simulation analysis and site test for the reinforcement project.


2020 ◽  
Vol 12 (16) ◽  
pp. 6493 ◽  
Author(s):  
Priscila Celebrini de Oliveira Campos ◽  
Tainá da Silva Rocha Paz ◽  
Letícia Lenz ◽  
Yangzi Qiu ◽  
Camila Nascimento Alves ◽  
...  

The rapid urban growth followed by disordered occupation has been generating significant impacts on cities, bringing losses of an economic and social nature that directly interfere with the well-being of the population. In this work, a proposal for local urban infrastructure problems associated with watercourse management is presented, comparing Sustainable Drainage System (SuDS) techniques and Low-Impact Development (LID) concepts with alternative traditional interventions. The study addresses sustainable alternatives to cope with the urbanization of the Cehab’s open channel, which is an important urban watercourse tributary of the Muriaé River, at the municipality of Itaperuna, Rio de Janeiro—Brazil. The multi-criteria decision-making method called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was applied here. The results highlighted the better performance of sustainable techniques when compared to the traditional ones, with an overall advantage of the geogrids and geocells for this case study. The obtained TOPSIS coefficients-C for these techniques were higher (0.59488, for Reach 1; and 0.68656, for Reach 2) than those for the others. This research, therefore, presented an important urban watercourse management methodology that can be further applied to guide sustainable investments and help the decision-making associated with the development of territories.


Sign in / Sign up

Export Citation Format

Share Document