scholarly journals Functional Genomics of Rice Pollen and Seed Development by Genome-wide Transcript Profiling and Ds Insertion Mutagenesis

2011 ◽  
Vol 7 (1) ◽  
pp. 28-40 ◽  
Author(s):  
Shu-Ye Jiang ◽  
Srinivasan Ramachandran
2021 ◽  
Vol 22 (2) ◽  
pp. 643
Author(s):  
Xiao Li ◽  
Fen Wang ◽  
Yanyan Xu ◽  
Guijun Liu ◽  
Caihong Dong

Hydrophobins are a family of small secreted proteins found exclusively in fungi, and they play various roles in the life cycle. In the present study, genome wide analysis and transcript profiling of the hydrophobin family in Cordyceps militaris, a well-known edible and medicinal mushroom, were studied. The distribution of hydrophobins in ascomycetes with different lifestyles showed that pathogenic fungi had significantly more hydrophobins than saprotrophic fungi, and class II members accounted for the majority. Phylogenetic analysis of hydrophobin proteins from the species of Cordyceps s.l. indicated that there was more variability among the class II members than class I. Only a few hydrophobin-encoding genes evolved by duplication in Cordyceps s.l., which was inconsistent with the important role of gene duplication in basidiomycetes. Different transcript patterns of four hydrophobin-encoding genes during the life cycle indicated the possible different functions for each. The transcripts of Cmhyd2, 3 and 4 can respond to light and were related with the photoreceptors. CmQHYD, with four hydrophobin II domains, was first found in C. militaris, and multi-domain hydrophobins were only distributed in the species of Cordycipitaceae and Clavicipitaceae. These results could be helpful for further function research of hydrophobins and could provide valuable information for the evolution of hydrophobins.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Soo Bin Kwon ◽  
Jason Ernst

AbstractIdentifying genomic regions with functional genomic properties that are conserved between human and mouse is an important challenge in the context of mouse model studies. To address this, we develop a method to learn a score of evidence of conservation at the functional genomics level by integrating information from a compendium of epigenomic, transcription factor binding, and transcriptomic data from human and mouse. The method, Learning Evidence of Conservation from Integrated Functional genomic annotations (LECIF), trains neural networks to generate this score for the human and mouse genomes. The resulting LECIF score highlights human and mouse regions with shared functional genomic properties and captures correspondence of biologically similar human and mouse annotations. Analysis with independent datasets shows the score also highlights loci associated with similar phenotypes in both species. LECIF will be a resource for mouse model studies by identifying loci whose functional genomic properties are likely conserved.


2007 ◽  
Vol 2 (6) ◽  
pp. 1399-1413 ◽  
Author(s):  
Marnik Vuylsteke ◽  
Johan D Peleman ◽  
Michiel JT van Eijk

2017 ◽  
Vol 2017 (9) ◽  
pp. pdb.top097550 ◽  
Author(s):  
Katerina Politi ◽  
Narendra Wajapeyee

2021 ◽  
Author(s):  
Heather R. Keys ◽  
Kristin A. Knouse

ABSTRACTOur ability to understand and modulate mammalian physiology and disease requires knowing how all genes contribute to any given phenotype in the organism. Genome-wide screening using CRISPR-Cas9 has emerged as a powerful method for the genetic dissection of cellular processes1,2, but the need to stably deliver single guide RNAs to millions of cells has restricted its implementation to ex vivo systems. These ex vivo systems cannot reproduce all of the cellular phenotypes observed in vivo nor can they recapitulate all of the factors that influence these phenotypes. There thus remains a pressing need for high-throughput functional genomics in a living organism. Here, we establish accessible genome-wide screening in the mouse liver and use this approach to uncover the complete regulation of cellular fitness in a living organism. We discover novel sex-specific and cell non-autonomous regulation of cell growth and viability. In particular, we find that the class I major histocompatibility complex is essential for preventing immune-mediated clearance of hepatocytes. Our approach provides the first comprehensive picture of cell fitness in a living organism and highlights the importance of investigating cellular phenomena in their native context. Our screening method is robust, scalable, and easily adapted to examine diverse cellular processes using any CRISPR application. We have hereby established a foundation for high-throughput functional genomics in a living mammal, enabling unprecedented insight into mammalian physiology and disease.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10617
Author(s):  
Jie Li ◽  
Xinhao Liu ◽  
Qingmei Wang ◽  
Junyan Sun ◽  
Dexian He

To set a systematic study of the Sorghum cystatins (SbCys) gene family, a genome-wide analysis of the SbCys family genes was performed by bioinformatics-based methods. In total, 18 SbCys genes were identified in Sorghum, which were distributed unevenly on chromosomes, and two genes were involved in a tandem duplication event. All SbCys genes had similar exon/intron structure and motifs, indicating their high evolutionary conservation. Transcriptome analysis showed that 16 SbCys genes were expressed in different tissues, and most genes displayed higher expression levels in reproductive tissues than in vegetative tissues, indicating that the SbCys genes participated in the regulation of seed formation. Furthermore, the expression profiles of the SbCys genes revealed that seven cystatin family genes were induced during Bipolaris sorghicola infection and only two genes were responsive to aphid infestation. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) confirmed that 17 SbCys genes were induced by one or two abiotic stresses (dehydration, salt, and ABA stresses). The interaction network indicated that SbCys proteins were associated with several biological processes, including seed development and stress responses. Notably, the expression of SbCys4 was up-regulated under biotic and abiotic stresses, suggesting its potential roles in mediating the responses of Sorghum to adverse environmental impact. Our results provide new insights into the structural and functional characteristics of the SbCys gene family, which lay the foundation for better understanding the roles and regulatory mechanism of Sorghum cystatins in seed development and responses to different stress conditions.


2021 ◽  
Author(s):  
Sabrina Lehmann ◽  
Bibi Atika ◽  
Daniela Grossmann ◽  
Christian Schmitt-Engel ◽  
Nadi Strohlein ◽  
...  

Abstract Background Functional genomics uses unbiased systematic genome-wide gene disruption or analyzes natural variations such as gene expression profiles of different tissues from multicellular organisms to link gene functions to particular phenotypes. Functional genomics approaches are of particular importance to identify large sets of genes that are specifically important for a particular biological process beyond known candidate genes, or when the process has not been studied with genetic methods before. Results Here, we present a large set of genes whose disruption interferes with the function of the odoriferous defensive stink glands of the red flour beetle Tribolium castaneum. This gene set is the result of a large-scale systematic phenotypic screen using a reverse genetics strategy based on RNA interference applied in a genome-wide forward genetics manner. In this first-pass screen, 130 genes were identified, of which 69 genes could be confirmed to cause knock-down gland phenotypes, which vary from necrotic tissue and irregular reservoir size to irregular color or separation of the secreted gland compounds. The knock-down of 13 genes caused specifically a strong reduction of para-benzoquinones, suggesting a specific function in the synthesis of these toxic compounds. Only 14 of the 69 confirmed gland genes are differentially overexpressed in stink gland tissue and thus could have been detected in a transcriptome-based analysis. Moreover, of the 29 previously transcriptomics-identified genes causing a gland phenotype, only one gene was recognized by this phenotypic screen despite the fact that 13 of them were covered by the screen. Conclusion Our results indicate the importance of combining diverse and independent methodologies to identify genes necessary for the function of a certain biological tissue, as the different approaches do not deliver redundant results but rather complement each other. The presented phenotypic screen together with a transcriptomics approach are now providing a set of close to hundred genes important for odoriferous defensive stink gland physiology in beetles.


Sign in / Sign up

Export Citation Format

Share Document