scholarly journals SPONGE SPICULE ASSEMBLAGES FROM THE MIDDLE ORDOVICIAN OF PONÓN TREHUÉ, SOUTHERN MENDOZA, ARGENTINA

2021 ◽  
Vol 15 (1) ◽  
pp. 37
Author(s):  
Matilde Sylvia Beresi ◽  
Susana Emma Heredia

Sponge spicule assemblages are described fom residues of conodont samples from Ordovician strata in the Sierra Pintada, southern Mendoza Province, Argentina. Spicules have been recovered from the Arenigian allochthonous megaconglomerates and from autochthonous limestones and carbonates sandstones of the Ponón Trehue Formation. This formation is a elastic-carbonate sequence representing olistostromic and turbidite facies. Conodonts in this formation are Llandeillan in age. The spicules are calcified and moderately preserved. The material shows a low diversity. Poriferan taxa found in this formation include heteractinid spicules as well as hexactinellid hexactines and non-lithistid demospongiid triaene and oxeas with some doubt. Associations of exclusively heteractinid spicules are restricted to allochthonous blocks of the shallow carbonate platform of the San Juan Formation (Arenig). In the outer platform and slope, autochthonous calcarenites and dark limestones contain hexactine spicules. These spicules evidence the existence of sponges in the Ordovician of the Ponón Trehue area, as a part of the Precordillera terrane. 

2000 ◽  
Vol 74 (3) ◽  
pp. 492-502
Author(s):  
Guillermo L. Albanesi ◽  
Christopher R. Barnes

A microevolutionary event involving the conodont Paroistodus lineage is documented in the Gualcamayo Formation (Middle Ordovician), Argentine Precordillera. A detailed sampling of limestones throughout the upper part of the San Juan Formation and the lower member of the Gualcamayo Formation yielded over 14,000 well-preserved conodont elements. Paroistodus originalis (Sergeeva, 1963) was recorded through the upper 230 m of the San Juan Formation and the lower member (10 m thick) of the Gualcamayo Formation. The derived species Paroistodus horridus (Barnes and Poplawski, 1973) was recorded throughout the middle member of the Gualcamayo Formation (65 m thick). The intermediate linking forms between both species are identified as two new taxa: Paroistodus horridus primus Albanesi, 1998b, and P. h. secundus Albanesi, 1998b. They were recorded in the uppermost 70 cm of the lower member. Apparently, the speciation event occurred under stressed environmental conditions with the drowning of the carbonate platform, i.e., the San Juan Formation, and the beginning of a deeper and restricted environment represented by the Gualcamayo black shales. The demise of the carbonate production was caused by a sea level rise and a significant influx of volcanic ashes. The punctuated speciation event occurred within an allopatric setting while the Precordillera occupied an isolated (Iapetus) oceanic position in its overall drift from Laurentia to Gondwana.


2021 ◽  
pp. 1-13
Author(s):  
Fernando J. Lavié ◽  
Ana I. Mestre ◽  
Marcelo G. Carrera

Abstract New linguliform microbrachiopods from the Middle Ordovician are described and illustrated. This fauna was recovered from the uppermost beds of the San Juan Formation in two sections of the Central Precordillera (Argentina), which are accurately dated to the Lenodus pseudoplanus Zone (middle Darriwilian). The fauna consists of the obolid Luthieria diminuta n. gen. n. sp., and the acrotretids Eoconulus tucunucoensis n. sp., Conotreta andina Lavié, Serra, and Feltes, Scaphelasma zharykensis Popov, and Numericoma rowelli Holmer et al. This low-diversity lingulate association displays close similarities with coeval faunas that inhabited the Laurentia, Baltica, and Kazakhstanian regions, in agreement with evidence from other linguliform and rhynchonelliform brachiopods. UUID: http//zoobank.org/fe9acbb0-6654-4462-ba4d-ea2386ae79f6


2016 ◽  
Vol 43 (1) ◽  
pp. 60 ◽  
Author(s):  
Nicolás A. Feltes ◽  
Guillermo L. Albanesi ◽  
Stig M. Bergström

Middle Darriwilian to lower Sandbian conodonts were recorded from the Las Aguaditas Formation at its type section in the Argentine Precordillera. A total of 9,974 conodont specimens were recovered from 46 carbonate samples, which represent 68 species of 38 genera. A biostratigraphic study verified a middle Darriwilian age for the interval spanning the contact between the San Juan and the Las Aguaditas formations. The following zones are determined in the study section: the Lenodus variabilis Zone, with the Periodon gladysae and Paroistodus horridus subzones following the Precordilleran scheme; the L. variabilis, Yangtzeplacognathus crassus, and the Eoplacognathus pseudoplanus zones with the Microzarkodina hagetiana and M. ozarkodella subzones, and the Pygodus anserinus Zone, according to the Scandinavian scheme; the Periodon macrodentatus Zone, with the Histiodella sinuosa, H. holodentata and H. cf. holodentata subzones, and the P. zgierzensis Zone with the H. kristinae Subzone that correlates the North American scheme. A stratigraphic gap was recognized between the lower and middle members of the Las Aguaditas Formation. It comprises the Eoplacognathus suecicus and Pygodus serra zones, and the lower subzone of the Pygodus anserinus Zone. The variation of conodont diversity through the study section conforms to shallowing and deepening patterns, which accompanies the changes of the provenance lithology. Three conodont assemblages were quantitatively recognized: a) Diverse conodont association, b) Low diversity conodont association and c) Recovery phase association. We propose to use the North American biozonal scheme of conodonts for the Central Precordillera because of the affinity of documented index taxa, which provides a more accurate intercontinental correlation for the global Middle Ordovician Series.


1980 ◽  
Vol 17 (8) ◽  
pp. 1007-1019 ◽  
Author(s):  
Colin F. Klappa ◽  
Paul R. Opalinski ◽  
Noel P. James

Lithostratigraphic nomenclature of early Middle Ordovician strata from western Newfound land is formally revised. The present Table Head Formation is raised to group status and extended to include overlying interbedded terrigenoclastic-rich calcarenites and shales with lime megabreccias. Four new formation names are proposed: Table Point Formation (previously lower Table Head); Table Cove Formation (previously middle Table Head); Black Cove Formation (previously upper Table Head); and Cape Cormorant Formation (previously Caribou Brook formation). The Table Point Formation comprises bioturbated, fossiliferous grey, hackly limestones and minor dolostones; the Table Cove Formation comprises interbedded lime mudstones and grey–black calcareous shales; the Black Cove Formation comprises black graptolitic shales; and the Cape Cormorant Formation comprises interbedded terrigenoclastic and calcareous sandstones, siltstones, and shales, punctuated by massive or thick-bedded lime megabreccias. The newly defined Table Head Group rests conformably or disconformably on dolostones of the Lower Ordovician St. George Group (an upward-migrating diagenetic dolomitization front commonly obscures the contact) and is overlain concordantly by easterly-derived flysch deposits. Upward-varying lithologic characteristics within the Table Head Group result from fragmentation and subsidence of the Cambro-Ordovician carbonate platform and margin during closure of a proto-Atlantic (Iapetus) Ocean.


2021 ◽  
Author(s):  
Emilia Jarochowska ◽  
Oskar Bremer ◽  
Alexandra Yiu ◽  
Tiiu Märss ◽  
Henning Blom ◽  
...  

<p>The Ludfordian Carbon Isotope Excursion (LCIE) reached the highest known δ<sup>13</sup>C values in the Phanerozoic. It was a global environmental perturbation manifested in a rapid regression attributed to glacial eustasy. Previous studies suggested that it has also heavily affected the diversity of conodonts, early vertebrates and reef ecosystems, but the timing of the crisis and recovery remained complicated owing to the lateral variability of δ<sup>13</sup>C values in epeiric platforms and rapid facies shifts, which drove faunal distribution. One of the best records of this interval is available in the Swedish island of Gotland, which preserves tectonically undisturbed strata deposited in a Silurian tropical carbonate platform. We revisited the world-renowned collection of the late Lennart Jeppsson, hosted at the Swedish Museum of Natural History, Stockholm, which holds the key to reconstruct the dynamics of faunal immigration and diversification following the LCIE. Here we focus on the Burgen erosional outlier, which remained a mystery, as it had been correlated with the excursion strata, but preserved a high diversity of conodonts and reefal ecosystems. We re-examined key outcrops and characterized macro- and microfacies, as well as chemostratigraphy and unpublished fauna in the collection. Strata in the Burgen outlier represent back-shoal facies of the Burgsvik Oolite Member and correspond to the Ozarkodina snajdri Conodont Biozone. The shallow-marine position compared to the more continental setting of coeval strata in southern Gotland, is reflected in the higher δ<sup>13</sup>C<sub>carb</sub> values, reaching +9.2‰. The back-shoal succession in this outcrop includes reefs, which contain a large proportion of microbial carbonates and have therefore been previously compared with low-diversity buildups developed in a stressed ecosystem. However, the framework of these reefs is built by a diverse coral-stromatoporoid-bryozoan fauna, indicating that a high microbial contribution might be a characteristic of the local carbonate factory rather than a reflection of restricted conditions. In the case of conodonts, impoverishment following the LCIE might be a product of facies preferences, as the diverse environments in the outlier yielded at least 20 of the 21 species known from the Burgsvik Formation in Gotland. Fish diversity also returned to normal levels following the LCIE with an estimated minimum of 9 species. Thelodont scales appear to dominate samples from the Burgen outlier, which is in line with previous reports. Our observations highlight how palaeoenvironmental reconstructions inform fossil niche and diversity analyses, but also how fossil museum collections continuously contribute new data on past biodiversity.</p>


1990 ◽  
Vol 27 (6) ◽  
pp. 731-741 ◽  
Author(s):  
Rudolf Bertrand

Carbonate platform sequences of Anticosti Island and the Mingan Archipelago are Early Ordovician to Early Silurian in age. With the exception of the Macasty Formation, the sequences are impoverished in dispersed organic matter, which is chiefly composed of zooclasts. Zooclast reflectances suggest that the Upper Ordovician and Silurian sequences outcropping on Anticosti Island are entirely in the oil window but that the Lower to Middle Ordovician beds of the Mingan Archipelago and their stratigraphic equivalents in the subsurface of most of Anticosti Island belong to the condensate zone. Only the deeper sequences of the southwestern sector of Anticosti Island are in the diagenetic dry-gas zone. The maximum depth of burial of sequences below now-eroded Silurian to Devonian strata increases from 2.3 km on southwestern Anticosti Island to 4.5 km in the Mingan Archipelago. A late upwarp of the Precambrian basement likely allowed deeper erosion of the Paleozoic strata in the vicinity of the Mingan Archipelago than on Anticosti Island. Differential erosion resulted in a southwestern tilting of equal maturation surfaces. The Macasty Formation, the only source rock of the basin (total organic carbon generally > 3.5%, shows a wide range of thermal maturation levels (potential oil window to diagenetic dry gas). It can be inferred from the burial history of Anticosti Island sequences that oil generation began later but continued for a longer period of geologic time in the northeastern part than in the southeastern part of the island. Oil generation was entirely pre-Acadian in the southern and western parts of Anticosti Island, but pre- and post-Acadian in the northern and eastern parts.


2020 ◽  
pp. 1-22 ◽  
Author(s):  
Xiaoqun Yang ◽  
Zhong Li ◽  
Tailiang Fan ◽  
Zhiqian Gao ◽  
Shuai Tang

Abstract Guided by conodont biostratigraphy and unconformities observed in the field, stable carbon isotopic analysis (δ13Ccarb) was performed on 210 samples from Lower–Middle Ordovician (Tremadocian to Darriwilian) sections and wells in the Tarim Basin, NW China. The δ13C trend in the Tarim Basin sections has three distinct characteristics: (1) from the Tremadocian to the Floian, a positive shift from −1.9 ‰ to −0.2 ‰ is observed near the boundary between the Penglaiba Formation and the Yingshan Formation; (2) from the Floian to the Dapingian, a positive shift in δ13C from −3 ‰ to −0.7 ‰ occurred under large-scale sea-level rise and a change in the sedimentary environment from a restricted platform to an open platform. Changes in the conodont type are also observed in the Tabei region; and (3) from the Dapingian to the Darriwilian, δ13C first decreased and then increased, showing a negative shift at the Dapingian–Darriwilian boundary. During the Floian, δ13C decreased in the study area, while it first decreased and then increased in other regions, which may reflect local sea-level movements in response to isostatic crustal movements. Two types of positive shift were identified at the Floian–Dapingian boundary, which likely show the effects of local factors, including a disconformity, dolomitization, and platform restriction, superimposed on the global signal of the carbon isotope. Some conodont zonations and recurrent negative excursions in Tremadocian, Floian and Dapingian stages appear to be truncated by unconformities, which are accompanied by short-term subaerial exposure due to sea-level fall and local tectonic uplift.


1997 ◽  
Vol 3 ◽  
pp. 205-224 ◽  
Author(s):  
James Sprinkle ◽  
Thomas E. Guensburg

Echinoderms underwent a major two-part radiation that produced all of the major groups found in the fossil record between the Early Cambrian and the Middle Ordovician. A small initial radiation in the Early and Middle Cambrian produced about nine classes containing low-diversity members of the Cambrian Evolutionary Fauna. These were characterized by primitive morphology, simple ambulacral feeding structures, and the early development of a multiplated stalk or stem for attachment to skeletal fragments on a soft substrate. Several groups became extinct at the end of the Middle Cambrian, leaving the Late Cambrian as a gap of very low diversity in the fossil record of echinoderms with only four classes preserved and very few occurrences of complete specimens, mostly associated with early hardgrounds. The survivors from this interval re-expanded in the Early Ordovician and were joined by many newly evolved groups to produce a much larger radiation of more advanced, diverse, and successful echinoderms representing the Paleozoic Evolutionary Fauna on both hard and soft substrates. At least 17 classes were present by the Middle Ordovician, the all-time high point for echinoderm class diversity, and nearly all of the major ways-of-life (except for deep infaunal burrowing) had been developed. With the rise to dominance of crinoids, many less successful or archaic groups did not survive the Middle Ordovician, and echinoderm class diversity dropped further because of the mass extinction at the end of the Ordovician. This weeding-out process of other less-successful echinoderm groups continued throughout the rest of the Paleozoic, and only five classes of echinoderms have survived to the Recent from this early Paleozoic radiation.


Sign in / Sign up

Export Citation Format

Share Document