Imitation Learning for High Speed General Object Manipulation

2020 ◽  
Vol 38 (6) ◽  
pp. 530-533
Author(s):  
Sho Sakaino
Author(s):  
Javier Sarria ◽  
Hector Montes ◽  
Manuel Prieto ◽  
Manuel Armada

Synthesizer suggests the chief feature element of clocking around modern-day high-speed energy systems. Every time appreciated seeing that for a phase-locked land (PLL), numbers synthesizers illustrate fantastic precision and even now let general object rendering linked with programmable numbers switching. While doing this dissertation lots of people deliver a certainly better model linked with Steadiness synthesizer coupled with focused on ugly Steadiness synthesizers implementing An electronic digital PLL. A persons vision might be globally placing and also specifications because of the straightforward varieties in the An electronic digital PLL: phase-frequency system, bill tubing, land purification technique, present-day dictated oscillator (VCO) coupled with programmable divider. This particular emulator achievement in the An electronic digital PLL implementing perhaps the most common 0.18µd CMOS technology around Piquance illustrate a fast wrapping up effort frame tremendous numbers range. This particular acquire length of time could be tailored via altering ones own bill tubing latest also,the land purification technique capacitor. PFD (Phase Steadiness Detector) marketplace forestalling deviation in the bill tubing marketplace under the founded problem might be designed. That comprehension of the LPF needs the published research within the land individual in the PLL. Encapsulating the perfect tradeoffs for illustration acquire alter, acquire an important portions of knowledge switch cost, this will likely often be simply just ones own tricky obstruct so that you can design. To acquire wider production numbers concentrating on alter, bigger capacitance is vital (i.e., great area). Which will boost the occasionally keeps going free of boost laptop computer food put usage, The project acknowledges some form of voltage-controlled oscillator (VCO) implementing a diamond ring diamond ring linked with single-ended current-starved oscillator can present tremendous jogging frequencies.


2019 ◽  
Vol 39 (1) ◽  
pp. 39-53
Author(s):  
David Kent ◽  
Carl Saldanha ◽  
Sonia Chernova

Robust remote teleoperation of high-degree-of-freedom manipulators is of critical importance across a wide range of robotics applications. Contemporary robot manipulation interfaces primarily utilize a free positioning pose specification approach to independently control each degree of freedom in free space. In this work, we present two novel interfaces, constrained positioning and point-and-click. Both novel approaches incorporate scene information from depth data into the grasp pose specification process, effectively reducing the number of 3D transformations the user must input. The novel interactions are designed for 2D image streams, rather than traditional 3D virtual scenes, further reducing mental transformations by eliminating the controllable camera viewpoint in favor of fixed physical camera viewpoints. We present interface implementations of our novel approaches, as well as free positioning, in both 2D and 3D visualization modes. In addition, we present results of a 90-participant user study evaluation comparing the effectiveness of each approach for a set of general object manipulation tasks, and the effects of implementing each approach in 2D image views versus 3D depth views. The results of our study show that point-and-click outperforms both free positioning and constrained positioning by significantly increasing the number of tasks completed and significantly reducing task failures and grasping errors, while significantly reducing the number of user interactions required to specify poses. In addition, we found that regardless of the interaction approach, the 2D visualization mode resulted in significantly better performance than the 3D visualization mode, with statistically significant reductions in task failures, grasping errors, task completion time, number of interactions, and user workload, all while reducing bandwidth requirements imposed by streaming depth data.


2019 ◽  
Vol 39 (2-3) ◽  
pp. 286-302 ◽  
Author(s):  
Yunpeng Pan ◽  
Ching-An Cheng ◽  
Kamil Saigol ◽  
Keuntaek Lee ◽  
Xinyan Yan ◽  
...  

We present an end-to-end imitation learning system for agile, off-road autonomous driving using only low-cost on-board sensors. By imitating a model predictive controller equipped with advanced sensors, we train a deep neural network control policy to map raw, high-dimensional observations to continuous steering and throttle commands. Compared with recent approaches to similar tasks, our method requires neither state estimation nor on-the-fly planning to navigate the vehicle. Our approach relies on, and experimentally validates, recent imitation learning theory. Empirically, we show that policies trained with online imitation learning overcome well-known challenges related to covariate shift and generalize better than policies trained with batch imitation learning. Built on these insights, our autonomous driving system demonstrates successful high-speed off-road driving, matching the state-of-the-art performance.


Author(s):  
Komei Sugiura ◽  
Naoto Iwahashi ◽  
Hideki Kashioka ◽  
Satoshi Nakamur

Procedia CIRP ◽  
2021 ◽  
Vol 97 ◽  
pp. 482-486
Author(s):  
Dionisis Andronas ◽  
Sotiris Xythalis ◽  
Panagiotis Karagiannis ◽  
George Michalos ◽  
Sotiris Makris

2001 ◽  
Author(s):  
Jahangir S. Rastegar ◽  
Lifang Yuan

Abstract A systematic method is presented for optimal integration of smart actuators into the structure of robot manipulators for the purpose of enabling them to perform smooth object manipulation with smooth actuated joint motions. Here, the motions are considered to be smooth if they do not contain high harmonic components. For optimal positioning of smart actuators in the structure of robot manipulators, a method is developed based on the evaluation of the transmissibility of displacement (velocity and/or force) from the smart actuators to the robot manipulator joint motions and the end-effector displacements (velocity and/or force). A method is then presented for synthesizing actuated joint and object motions to achieve trajectories that do not contain high harmonic components. By minimizing the high harmonic components of the required joint and object motions with properly sized and placed smart actuators, such computer-controlled machines can operate at relatively higher speeds and achieve greater tracking precision with minimal vibration and control problems. A number of numerical examples are provided.


Sign in / Sign up

Export Citation Format

Share Document